|本期目录/Table of Contents|

[1]池婷,赵震乾,张后虎,等.医疗废物堆置场地土壤抗生素抗性基因组成特征——以华东丘陵地区某医废堆场为例[J].应用与环境生物学报,2019,25(03):561-569.[doi:10.19675/j.cnki.1006-687x.201808030]
 CHI Ting,ZHAO Zhenqian,ZHANG Houhu** & KONG Deyang.Characteristics of antibiotic resistance genes in the soil of a medical waste disposal site: A case study of a disposal site in the hilly area of eastern China[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):561-569.[doi:10.19675/j.cnki.1006-687x.201808030]
点击复制

医疗废物堆置场地土壤抗生素抗性基因组成特征——以华东丘陵地区某医废堆场为例()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
561-569
栏目:
研究论文
出版日期:
2019-06-25

文章信息/Info

Title:
Characteristics of antibiotic resistance genes in the soil of a medical waste disposal site: A case study of a disposal site in the hilly area of eastern China
作者:
池婷;?赵震乾;?张后虎;?孔德洋
生态环境部南京环境科学研究所 南京 210042
Author(s):
CHI Ting;? ZHAO Zhenqian;? ZHANG Houhu** & KONG Deyang
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
关键词:
抗生素抗性基因;?土壤;?医疗废物;?高通量测序;?环境污染
Keywords:
antibiotic resistance gene;? soil;? medical waste;? high-throughput sequencing;? environmental pollution
分类号:
X53
DOI:
10.19675/j.cnki.1006-687x.201808030
摘要:
抗生素抗性基因(Antibiotic resistance genes,ARGs)目前已经被认为是一种重要的环境污染物;土壤中存在的微生物代表了ARGs的古老进化起源之一,并且已被认为是临床病原体获得ARGs的重要交换介质. 为测试医疗废物堆置区域的ARGs丰度,在医废堆置区内外采集了共28个土壤样品. 在提取样品中的微生物宏基因组之后,对所提取的DNA进行高通量测序. 将所得序列与抗生素抗性基因数据库进行比对,并通过计算不同类型以及不同亚型的ARGs拷贝数/16S rRNA基因拷贝数评估ARGs的组成. 结果显示,医废堆置区内样本所含的氨基糖苷类、氯霉素类、磺胺类、四环素类ARGs丰度显着高于堆置区外样本(分别达到了0.0134 ± 0.0138、0.00615 ± 0.00747、0.0188 ± 0.0254以及0.00504 ± 0.00292 ARGs拷贝数/16S rRNA基因拷贝数),特别是sul1(磺胺类)、floR(氯霉素类)、catB(氯霉素类)、aph(3’’)-I(氨基糖苷类)和tetG(四环素类)这5类ARGs亚型;同时,医废堆置区内样本有着更高的ARGs多样性(t-test,P < 0.05). 本研究表明医疗废物堆置会显着提高区域内土壤中ARGs的丰度以及多样性,从而增加潜在环境风险. (图7 表4 参34)
Abstract:
Antibiotic resistance genes (ARGs) are considered globally emergent pollutants in many environmental systems. Microorganisms in soil represent an evolutionary origin of ARGs and have been proposed as a reservoir for ARGs exchanging with clinical pathogens. To test the ARG profiles in the target medical waste dumping area, 28 different soil samples were taken from the area with medical waste and the nearby area. Metagenomes of the microorganisms from the soil sample were extracted for high-throughput sequencing. ARG abundances in these samples were then obtained by searching the metagenomic sequences against the antibiotic resistance genes database and by evaluating ARGs per copy of the 16S rRNA gene at the type level and subtype level. Overall, compared to the nearby samples, the samples from the area with medical waste was significantly enriched with the ARGs encoding resistances to aminoglycoside, chloramphenicol, sulfonamide, and tetracycline (achieved 0.0134 ± 0.0138, 0.00615 ± 0.00747, 0.0188 ± 0.0254, and 0.00504 ± 0.00292 ARGs copy number/16S rRNA gene copy number, respectively). This was especially true for the ARG subtypes of sul1 (sulfonamide), floR (chloramphenicol), catB (chloramphenicol), aph(3’’)-I (aminoglycoside), and tetG (tetracycline). Moreover, the diversity of ARGs in the samples from the polluted area was significantly higher than that of other samples (t-test, P < 0.05). The comparatively high abundance and diversity of ARGs indicated the potential health risk of the medical wastes in the soil in the area.

参考文献/References:

1 Pruden A, Pei RT, Storteboom H. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado [J]. Environ Sci Technol, 2006, 40 (23): 7445-7450
2 Martinez JL. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321 (5887): 365-367
3 Benvenis R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria [J]. PNAS, 1973, 70 (8): 2276-2280
4 Marshall CG, Lessard I AD, Park IS. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms [J]. Antimicrob Agents Chemother 1998, 42 (9): 2215-2220
5 沈怡雯, 黄智婷, 谢冰. 抗生素及其抗性基因在环境中的污染、降解和去除研究进展[J]. 应用与环境生物学报, 2015, 21 (2): 181-187 [Shen YW, Huang ZT, Xie B. Advances in research of pollution, degradation and removal of antibiotics and antibiotic resistance genes in the environment [J]. Chin J Appl Environ Biol, 2015, 21 (2): 181-187]
6 Forsberg KJ, Reyes A, Wang B. The shared antibiotic resistome of soil bacteria and human pathogens [J]. Science, 2012, 337 (6098): 1107-1111
7 Hatosy SM, Martiny AC. The ocean as a global reservoir of antibiotic resistance genes [J]. Appl Environ Microb, 2015, 81 (21): 7593-7599
8 Chen BW, Yang Y, Liang X M. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments [J]. Environ Sci Technol, 2013, 47 (22): 12753-12760
9 Segawa T, Takeuchi N, Rivera A. Distribution of antibiotic resistance genes in glacier environments [J]. Environ Microbiol Rep, 2013, 5 (1): 127-134
10 Amos GCA, Zhang L, Hawkey P M. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes [J]. Vet Microbiol, 2014, 171 (3-4): 441-447
11 Rahube TO, Marti R, Scott A. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest [J]. Appl Environ Microb, 2014, 80 (22): 6898-6907
12 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28 (8): 1499-1505 [Luo Y, Zhou QX. Antibiotic resistance genes (ARGs) as emerging pollutants [J]. Acta Sci Circumst, 2008, 28 (8):1499-1505]
13 王柳红, 奚慧, 黄兴华, 孙金昭, 谢冰. 城市垃圾填埋场抗生素抗性基因的污染特征[J]. 应用与环境生物学报, 2019, 25 (2): 333-3328 [Wang LH,Xi H, Huang XH, Xie B.Characteristics of antibiotic resistance genes in municipal solid waste landfill [J]. Chin J Appl Environ Biol, 2019, 25 (2): 333-3328]
14 Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment [J]. Water Res, 2012; 46 (7): 2355-2364
15 史昕龙, 赵由才. 医疗废物管理与污染控制技术[M]. 北京: 化学工业出版社, 2017 [Shi XL, Zhao YC. Medical Waste Management and Pollution Control Technology [M]. Beijing. Chemical Industry Press, 2017]
16 Yin X, Jiang XT, Chai B, Li L, Yang Y, Cole JR, Tiedje JM, Zhang T. ARGs-OAP v2. 0 with an expanded SARG database and hidden markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics, 2018, 34 (13): 2263-2270
17 Yang Y, Jiang X, Chai B. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database [J]. Bioinformatics, 2016, 32 (15): 2346-2351
18 Yang Y, Jiang X T, Zhang T. Evaluation of a hybrid approach using UBLAST and BLASTX for metagenomic sequences annotation of specific functional genes [J]. PLoS ONE, 2014, 9 (10): 10.1371/journal.pone.0110947
19 Desantis TZ, Hugenholtz P, Larsen N. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J]. Appl Environ Microb, 2006, 72 (7): 5069-5072
20 Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol, 2007, 62 (2): 142-160
21 Li AD, Li LG, Zhang T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants [J]. Front Microbiol, 2015, 6: 1025
22 Li B, Yang Y, Ma L. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes [J]. ISME J, 2015, 9 (11): 2490-502
23 Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters [J]. Nature, 2007, 446 (7137): 749-757
24 Thiolas A, Bornet C, Davin-Regli A, Pagès JM, Bollet C. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes [J]. Biochem Biophys Res Commun, 2004, 317 (3): 851-856
25 Levesque C, Piche L, Larose C. PCR mapping of integrons reveals several novel combinations of resistance genes [J]. Antimicrob Agents Chemother, 1995, 39 (1): 185-191
26 Hoa PTP, Nonaka L, Viet PH, Suzuki S. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of North Vietnam [J]. Sci Total Environ, 2008, 405 (1-3): 377-384
27 Ma L, Li AD, Yin XL. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments [J]. Environ Sci Technol, 2017, 51 (10): 5721-5728
28 Luo Y, Wang Q, Lu Q, Mu Q, Mao D. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons [J]. Environ Sci Technol Lett, 2014, 1 (5): 266-270
29 Cloeckaert A, Baucheron S, Chaslus-Dancla E. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant [J]. Antimicrob Agents Chemother, 2001, 45 (8): 2381-2382
30 Doublet B, Schwarz S, Kehrenberg C, Cloeckaert A. Florfenicol resistance gene floR is part of a novel transposon [J]. Antimicrob Agents Chemother, 2005, 49 (5): 2106-2108
31 Tennstedt T, Szczepanowski R, Braun S, Pühler A, Schlüter A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant [J]. FEMS Microbiol Ecol, 2003, 45 (3): 239-252
32 Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010 [J]. Gene, 1989, 75 (2): 271-88
33 Roberts MC. Acquired tetracycline resistance genes//Dougherty T, Pucci M. Antibiotic Discovery and Development. Boston: Springer, 2012
34 Li AD, Metch JW, Wang Y, Garner E, Zhang AN, Riquelme MV. Effects of sample preservation and DNA extraction on enumeration of antibiotic resistance genes in wastewater [J]. FEMS Microbiol Ecol, 2018, 94 (2): 10.1093/femsec/fix189

相似文献/References:

[1]黄银晓,林舜华,孔令韶,等.内蒙阿拉善地区植物与土壤元素背景值特征及其相互关系[J].应用与环境生物学报,1996,2(04):329.
 Huang Yinxiao,Lin Shunhua,Kong Lingshao,et al.THE CHARACTERISTICS OF ELEMENT BACKGROUND VALUES OF PLANTS AND SOILS AND THEIR RELATIONSHIPS IN ALASHAN,INNER MONGOLIA[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):329.
[2]杨玉盛,何宗明,俞新妥.杉木林取代阔叶林后土壤生物学活性变化的研究[J].应用与环境生物学报,1997,3(04):313.
 Yang Yusheng,He Zongming,Yu Xintuo.CHANGES OF SOIL BIOLOGICAL ACTIVITIES AFTER THE REPLACEMENT OF BROADLEAVED FOREST BY CHINESE FIR FOREST[J].Chinese Journal of Applied & Environmental Biology,1997,3(03):313.
[3]杨奇勇,杨劲松,余世鹏,等.不同尺度下耕地土壤Cr含量的空间自相关性分析[J].应用与环境生物学报,2011,17(03):393.[doi:10.3724/SP.J.1145.2011.00393]
 YANG Qiyong,YANG Jinsong,YU Shipeng,et al.Spatial Autocorrelation Analysis of Cr Content in Cultivated Soil at Different Scales[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):393.[doi:10.3724/SP.J.1145.2011.00393]
[4]王瑾,王喆之,董忠民.土壤氢氧化细菌促进作物生长机理研究进展[J].应用与环境生物学报,2012,18(05):853.[doi:10.3724/SP.J.1145.2012.00853]
 WANG Jin,WANG Zhezhi,DONG Zhongmin.Progress in Recent Research on Soil Hydrogen-oxidizing Bacteria Associated with Legume Nodules and Rotation Benefits[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):853.[doi:10.3724/SP.J.1145.2012.00853]
[5]张艺伟,狄晓艳,武冬梅,等.山西工矿区土壤SO2-PAHs复合污染对玉米种子萌发和幼苗生长的影响[J].应用与环境生物学报,2013,19(01):134.[doi:10.3724/SP.J.1145.2013.00134]
 ZHANG Yiwei,DI Xiaoyan,WU Dongmei,et al.Effects of Combined Pollution of SO2 and PAHs on Seed Germination and Growth of Maize in Shanxi Industrial and Mining Area[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):134.[doi:10.3724/SP.J.1145.2013.00134]
[6]马启翔,李伟,潘开文,等.持续碳源添加对油松和连香树林地土壤氮转化的影响[J].应用与环境生物学报,2013,19(03):426.[doi:10.3724/SP.J.1145.2013.00426]
 MA Qixiang,LI Wei,PAN Kaiwen,et al.Effect of Continuous Glucose Addition on Soil N Transformation of the Pinus tabulaeformis and Cercidiphyllum japonicum Plantations[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):426.[doi:10.3724/SP.J.1145.2013.00426]
[7]崔邢,张亮,林勇明,等.不同土壤条件下解磷菌处理对巨尾桉土壤有效磷含量的影响[J].应用与环境生物学报,2015,21(04):740.[doi:10.3724/SP.J.1145.2015.01014]
 CUI Xing,ZHANG Liang,LIN Yongming,et al.Effects of phosphate-solubilizing bacteria treatment under different soil conditions on Eucalyptus grandis × E. Urophylla soil available phosphorus content[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):740.[doi:10.3724/SP.J.1145.2015.01014]
[8]王君,杜秉海,马海林,等.纺锤形芽孢杆菌L13对蓝莓生长及根际土壤 生物学特性的影响*[J].应用与环境生物学报,2016,22(05):917.[doi:10.3724/SP.J.1145.2015.12014]
 WANG Jun,DU Binghai**,et al.Effect of Bacillus fusiformis L13 on blueberry growth and rhizosphere soil biological characteristics*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):917.[doi:10.3724/SP.J.1145.2015.12014]
[9]张杨雪,蒋楠,吉柔风,等.一种提取土壤样品中麻疯树核糖体失活蛋白curcin的方法[J].应用与环境生物学报,2017,23(06):1129.[doi:10.3724/SP.J.1145.2017.01026]
 ZHANG Yangxue,JIANG Nan,JI Roufeng,et al.A method of extracting ribosome-inactivating protein curcin of Jatropha curcas L. from soil samples[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):1129.[doi:10.3724/SP.J.1145.2017.01026]
[10]李婷婷,聂富育,杨万勤,等.四川盆地西缘4种人工林土壤活性氮季节动态[J].应用与环境生物学报,2018,24(04):744.[doi:10.19675/j.cnki.1006-687x.2017.11037]
 LI Tingting,NIE Fuyu,et al.Seasonal dynamics of labile soil nitrogen from four plantations at the western edge of the Sichuan Basin[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):744.[doi:10.19675/j.cnki.1006-687x.2017.11037]

更新日期/Last Update: 2019-06-25