|本期目录/Table of Contents|

[1]孙雪丽,刘范,田娜,等.香蕉MaMPK1基因的克隆与表达模式[J].应用与环境生物学报,2019,25(04):985-992.[doi:10.19675/j.cnki.1006-687x.2018.10027]
 SUN Xueli,LIU Fan,TIAN Na,et al.Cloning and expression pattern analysis of the banana MaMPK1 gene[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):985-992.[doi:10.19675/j.cnki.1006-687x.2018.10027]
点击复制

香蕉MaMPK1基因的克隆与表达模式
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
985-992
栏目:
研究论文
出版日期:
2019-08-25

文章信息/Info

Title:
Cloning and expression pattern analysis of the banana MaMPK1 gene
作者:
孙雪丽;?刘范;?田娜;?Bodjrenou Mahoudjro David;?项蕾蕾;?程春振
福建农林大学园艺学院,园艺植物生物工程研究所 福州 350002
Author(s):
SUN Xueli;? LIU Fan;? TIAN Na;? Bodjrenou Mahoudjro David;? XIANG Leilei & CHENG Chunzhen**
Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
香蕉;?MAPK1;?基因克隆;?生物信息学分析;?表达模式
Keywords:
banana;? MAPK1;? gene cloning;? bioinformatics analysis;? expression pattern
分类号:
S668.1
DOI:
10.19675/j.cnki.1006-687x.2018.10027
摘要:
为研究香蕉MAPK1的序列特征及其在不同激素处理、逆境胁迫下的表达趋势,以‘天宝蕉’为材料,采用RT-PCR技术克隆MaMPK1并对其进行生物信息学分析和不同处理下的表达模式分析. 结果显示该基因编码区长为1 182 bp,可编码393个氨基酸. 其编码蛋白具有STKc_TEY_MAPK结构域,属于MAPK基因家族TEY亚型A亚家族,是不稳定的脂溶性亲水酸性蛋白,无信号肽和跨膜结构,有多个磷酸化位点. 亚细胞定位预测结果显示MaMPK1主要定位于细胞核. 蛋白互作预测结果显示该蛋白与HSFA4A存在互作,暗示其可能在香蕉抗热反应过程中发挥作用. 启动子顺式作用元件预测结果显示MaMPK1启动子包含多种激素和逆境胁迫相关作用元件. 定量分析结果显示MaMPK1的表达受SA、45 ℃、低温和盐胁迫抑制,受茉莉酸甲酯(MeJA)和枯萎病菌侵染诱导上调,在脱落酸(ABA)处理后期极显着上调表达. 本研究表明MaMPK1广泛参与香蕉逆境胁迫应答. (图9 表1 参35)
Abstract:
To reveal the sequence characteristics of the banana MAPK1 gene and its expression pattern under different phytohormone and stress treatments, MaMPK1 was cloned from ‘Tianbaojiao’ banana using RT-PCR and was subjected to a series of bioinformatic and expression pattern analysis. The coding sequence of MaMPK1 was 1 182 bp in length and was predicted to encode 393 amino acids. The MaMPK1-encoded protein contained a STKc_TEY_MAPK domain and belonged to the TEY subtype and a subfamily of the MAPK gene family. It was an unstable liposoluble hydrophilic acidic protein without a signal peptide or transmembrane structure and with multiple phosphorylation sites. Subcellular localization prediction results showed that MaMPK1 are mainly located in the nucleus. Protein interaction prediction results indicated that the protein may interact with HSFA4A, signifying that it functions in the banana heat response. An analysis to predict promoter cis-acting elements identified multiple phytohormones and stress-related cis elements. The results of quantitative real time PCR analysis showed that the expression of MaMPK1 was inhibited by SA, 45 °C high temperature, low temperature, and salt stress treatments; upregulated by methyl jasmonate (MeJA) and banana fusarium wilt pathogen infection; and significantly upregulated at the late stage of abscisic acid (ABA) treatment. This study showed that MaMPK1 are widely involved in banana stress responses.

参考文献/References:

1 Hwa CM, Yang XC. The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis [J]. Acta Physiol Plant, 2008, 30 (3): 277-286
2 李凤梅. 植物丝裂原活化蛋白激酶激酶的生物信息学分析[J]. 北方园艺, 2010 (3): 196-199 [Li FM. Bioinformatics analysis of plant MAPKK [J]. North Horticult, 2010 (3): 196-199]
3 赵琳琳, 徐启江, 姜勇, 李玉花. 生物和非生物胁迫下的植物细胞中丝裂原活化蛋白激酶 (MAPK) 信号转导[J]. 植物生理学报, 2008, 44 (1): 169-174 [Zhao LL, Xu QJ, Jiang Y, Li YH. The mitogen-activated protein kinase signal transduction in plant cell under biotic and abiotic stress conditions [J]. Plant Physiol Commun, 2008, 44 (1): 169-174]
4 Ligterink W, Hirt H. Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools [J]. Int Rev Cytol, 2001, 201: 209-275
5 Lchimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC. Mitogen-activated protein kinase cascades in plants: a new nomenclature [J]. Trends Plant Sci, 2002, 7 (7): 301-308
6 Reyna NS, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection [J]. Mol Plant Microbe Interact, 2006, 19 (5): 530-540
7 Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang SQ, Seguin A, Ellis BE. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families [J]. Trends Plant Sci, 2006, 11 (4): 192-198
8 Kong FL, Wang J, Cheng L, Liu SY, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum [J]. Gene, 2012, 499 (1): 108-120
9 Cak?r B, K?l??kaya O. Mitogen-activated protein kinase cascades in Vitis vinifera [J]. Front Plant Sci, 2015, 6 (556): 556
10 Nadarajah K, Sidek HM. The green MAPKs [J]. Asian J Plant Sci, 2010, 9 (1): 1-10
11 Tanoue T, Adachi M, Moriguchi T, Nishida E. A conserved docking motif in MAP kinases common to substrates, activators and regulators [J]. Nat Cell Biol, 2000, 2 (2): 110-116
12 姜生秀, 李德禄. 植物丝裂原活化蛋白激酶级联信号转导通路研究进展[J]. 西北植物学报, 2016, 36 (6): 1278-1284 [Jiang SX, Li DL. Research progress of mitogen-activated protein kinase signal transduction pathway [J]. Acta Bot Bore-Occid Sin, 2016, 36 (6): 1278-1284]
13 Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development [J]. Trends Plant Sci, 2015, 20 (1): 56-64
14 Meng X, Zhang S. MAPK cascades in plant disease resistance signaling [J]. Annu Rev Phytopathol, 2013, 51 (1): 245-266
15 Ding HD, He J, Wu Y, Wu XX, Ge CL, Wang YJ, Zhong SL, Peiter E, Liang JS, Xu WF. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high temperature stress response [J]. Plant Physiol, 2018, DOI: 10.1104/pp.18.00067
16 孙雪丽, 郝向阳, 王天池, 赖钟雄, 程春振. 香蕉枯萎病防控和抗病育种研究进展[J]. 果树学报, 2018 (7): 870-879 [Sun XL, Hao XY, Wang TC, Lai ZX, Cheng CZ. Researches on the control and disease resistance breeding of banana fusarium wilt disease [J]. J Fruit Sci, 2018 (7): 870-879]
17 Bartels S, Anderson JC, Besteiro MAG, Carreri A, Hirt H, Buchala A, Métraux JP, Peck SC, Ulm R. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and snc1-mediated responses in Arabidopsis [J]. Plant Cell, 2009, 21 (9): 2884-2897
18 Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco [J]. Plant Biol, 2014, 16 (3): 558-570
19 Asif MH, Lakhwani D, Pathak S, Bhambhani S, Bag SK, Trivedi PK. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening [J]. Funct Integr Genomics, 2014, 14 (1): 161-175
20 Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments [J]. Plant Cell Physiol, 2008, 49 (6): 865-879
21 冯新. 香蕉SOD基因家族的全基因组鉴定及功能分析[D]. 福州: 福建农林大学, 2016 [Feng X. Genome-wide identification and function analysis of the superoxide dismutase gene family in Musa spp. [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016]
22 程春振. 利用病害诱导基因及基因沉默提高柑橘对黄龙病和衰退病的抗性[D]. 重庆: 西南大学, 2015 [Cheng CZ. Use of disease-induced genes and gene silencing in promoting resistance of citrus to citrus Huanglongbing and Citrus tristeza [D]. Chongqing: Southwest University, 2015]
23 程春振, 马文昇, 刘炜婳, 张梓浩, 齐全, 孙雪丽, 张永艳, 赖钟雄. 三明野生蕉和天宝蕉对FocTR4侵染早期应答的差异[J]. 福建农林大学学报(自然科学版), 2017, 46 (4): 397-401 [Cheng CZ, Ma WS, Liu WH, Zhang ZH, Qi Q, Sun XL, Zhang YY, Lai ZX. Comparisons of early responses of‘Tianbaojiao’banana and Sanming wild banana to FocTR4 infection [J]. J Fujian Agric For Univ (Nat Sci Ed), 2017, 46 (4): 397-401]
24 Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions [J]. Planta, 2011, 234 (2): 377-390
25 Meredith, Lloyd C. Rock characteristics affecting the effects of blasting: on the stress waves in rocks and their effects on rock breaking—2: (3rd report). Ichiro Ito and Takehisa Sakurai. J. Min. Metall. Inst. Japan, 74, 365-370 (1958) [J]. Plant Physiol, 2014, 165 (1): 319-334
26 龙璐. 棉花丝裂原活化蛋白激酶基因GbMPK3的功能鉴定[D]. 武汉: 华中农业大学, 2014 [Long L. Characterization of GbMPK3, a mitogen-activated protein kinase gene from cotton [D]. Wuhan: Huazhong Agricultural University, 2014]
27 曹红利, 陈丹, 叶乃兴, 郭雅玲, 岳川. 茶树CsMAPK3的全长克隆及其逆境表达分析[J]. 园艺学报, 2017, 44 (11): 2203-2214 [Cao HL, Chen D, Ye NX, Guo YL, Yue C. Cloning and abiotic stress expression analysis of CsMAPK3 gene in tea plant [J]. Acta Hortic Sin, 2017, 44 (11): 2203-2214]
28 Xing Y, Jia WS, Zhang JH. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis [J]. Plant J, 2010, 54 (3): 440-451
29 Lin F, Ding HD, Wang JX, Zhang H, Zhang AY, Zhang Y, Tan MP, Dong W, Jiang MY. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signaling [J]. J Exp Bot, 2009, 60 (11): 3221-3238
30 Zhang H, Ni L, Liu YP, Wang YF, Zhang AY, Tan MP, Jiang MY. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice [J]. J Integr Plant Biol, 2012, 54 (7): 500-510
31 Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis [J]. Plant Cell, 2007, 19 (3): 805-818
32 Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana [J]. Plant Cell, 2009, 21 (3): 944-953
33 Teige M, Scheikl E, Eulgem T, Do?czi R, Lchimura K, Shinozaki K, Dangl JL, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis [J]. Mol Cell, 2004, 15 (1): 141-152
34 Yuan B, Shen X, Li X, Xu C, Wang S. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens [J]. Planta, 2007, 226 (4): 953-960
35 Zhang L, Xi DM, Luo L, Meng F, Li YZ, Wu CA, Guo XQ. Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress [J]. FEBS J, 2011, 278 (8): 1367-1378

相似文献/References:

[1]袁先福,孙玉菡,朱成之,等.轮作联用生物有机肥促进香蕉生长[J].应用与环境生物学报,2018,24(01):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
 YUAN Xianfu,SUN Yuhan,ZHU Chengzhi,et al.Rotation combined with bio-organic fertilizer application to promote banana growth[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
[2]黄玉吉,赖钟雄.香蕉几丁质酶基因ChiI2超表达载体和干涉表达载体的构建[J].应用与环境生物学报,2019,25(03):672.[doi:10.19675/j.cnki.1006-687x.201809019]
 HUANG Yuji LAI Zhongxiong**.Over-expression and RNAi expression vector construction for the ChiI2 gene of banana[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):672.[doi:10.19675/j.cnki.1006-687x.201809019]

更新日期/Last Update: 2019-08-25