|本期目录/Table of Contents|

 LU Wenshuo,TIAN Xingjun & WANG Qiang**.Regulation effects of common ions on the degradation rate of reactive brilliant blue decomposed by laccase[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):959-965.[doi:10.19675/j.cnki.1006-687x.2018.10031]





Regulation effects of common ions on the degradation rate of reactive brilliant blue decomposed by laccase
南京大学生命科学学院 南京 210023
LU Wenshuo;? TIAN Xingjun & WANG Qiang**
School of Life Sciences, Nanjing University, Nanjing 210023, China
laccase;? laccase-mediator system;? reactive brilliant blue;? ion;? degradation rate;? active site
Q554 : X703
漆酶具有很高的工业价值,但水体中离子的存在为其推广使用带来了巨大挑战. 探讨水体中常见的7种阳离子和8种阴离子调控自由漆酶和漆酶–介体系统对水中活性艳蓝降解速率的差异. 结果显示:Mn2+、Cu2+、Zn2+、HPO42- 和NO2-在0-10 mmol/L范围内可促进漆酶对活性艳蓝的降解,降解速率由高到低依次为NO2-、Mn2+、Cu2+、Zn2+、HPO42-;SO32- 、Cl-、Fe2+和Fe3+对活性艳蓝的降解有抑制作用,其中Fe2+和SO32-的最低抑制浓度分别为5和0.5 mmol/L;其他离子对漆酶降解活性艳蓝没有显着性影响. 在5种介体的协同作用中,紫脲酸(VA)的效果最佳,导致漆酶对活性艳蓝的降解速率提升10%左右,其余介体的促进效率明显低于VA. 在同等离子的调控下,漆酶–介体系统中的降解速率优于自由漆酶. 本研究初步揭示了漆酶对活性艳蓝的降解机理,同时可以通过控制水体中离子的种类和数量来更好地实现漆酶对活性艳蓝的降解,结果可为漆酶在实际染料废水处理中的应用提供理论依据. (图4 表4 参40)
Laccase plays a key role in degrading dye wastewater; however, a major challenge is the presence of various ions that limit the potential application of the enzyme in bioremediation. This study compared the degradation rates of reactive brilliant blue regulated by seven metal ions and eight anions in the free laccase system and laccase-mediator system. The results showed that Mn2+, Cu2+, Zn2+, HPO42-, and NO2- can promote the degradation rates of reactive brilliant blue decomposed by laccase. The degradation rates from highest to lowest were NO2-, Mn2+, Cu2+, Zn2+, and HPO42-. In contrast, the addition of Cl-, Fe2+, or Fe3+ at low doses significantly inhibited degradation rate of reactive brilliant blue decomposed by laccase. The minimum inhibitory concentrations of Fe2+ and SO32- were 5 mmol/L and 0.5 mmol/L, respectively. Moreover, the degradation rates were not significantly different when mediated by other ions. We also selected five redox-mediating compounds that follow distinct oxidation pathways during RBBR degradation. The laccase-VA system showed the highest degradation rate of reactive brilliant blue, approximately 10% higher than that in the pure laccase system. The degradation rate in the laccase-mediator system was better than that in the free laccase system when under the control of equivalent ions. Therefore, to provide theoretical bases for the application of laccase in the treatment of dye wastewater, this study aimed to analyze the degradation rates of reactive brilliant blue by controlling the types and concentrations of ions in the free laccase and laccase-mediator systems.


1. Wang SM, Guan Y, Wang LP, Zhao W, He H, Xiao J, Yang SG, Sun C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater [J]. Appl Catal B, 2015, 168-169: 448-457
2. Rahmat NA, Ali AA, Salmiati, Hussain N, Muhamad MS, Kristanti RA, Hadibarata T. Removal of Remazol Brilliant Blue R from aqueous solution by dsorption using pineapple leaf powder and lime peel powder [J]. Water Air Soil Pollut, 2016, 227 (4): 1-11
3. Bedin KC, de Azevedo SP, Leandro PKT, Cazetta AL, Almeida VC. Bone char prepared by CO2 atmosphere: preparation optimization and adsorption studies of Remazol Brilliant Blue R [J]. J Clean Prod, 2017, 161: 288-298
4. Javaid R, Qazi UY, Kawasaki S. Highly efficient decomposition of Remazol Brilliant Blue R using tubular reactor coated with thin layer of PdO [J]. J Environ Manage, 2016, 180: 551-556
5. Zhang SC, Lu XJ. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent [J]. Chemosphere, 2018, 206: 777-783
6. Yang J, Ng TB, Lin J, Ye XY. A novel laccase from basidiomycete Cerrena sp.: cloning, heterologous expression, and characterization [J]. Int J Biol Macromol, 2015, 77: 344-349
7. Manavalan T, Manavalan A, Thangavelu KP, Thangavelu KP, Heese K. Characterization of optimized production, purification and application of laccase from Ganoderma lucidum [J]. Biochem Eng J, 2013, 70: 106-114
8. 刘忠川, 王刚刚. 真菌漆酶结构与功能研究进展[J]. 生物物理学报. 2013, 29 (9): 629-645 [Liu ZC,Wang GG. Research progress on the structure and function of fungus laccase [J]. Biophys J, 2013, 29 (9): 629-645]
9. Piontek K, Antorini M, Choinowski T. Crystal structure of a Laccase from the fungus Trametes versicolor at 1.90-? resolution containing a full complement of coppers [J]. J Biol Chem, 2002, 277 (40): 37663-37669
10. 张泽雄, 刘红艳, 邢贺, 马钰. 漆酶可降解底物种类的研究进展[J]. 生物技术通报, 2017, 33 (9): 1-6 [Zhang ZX, Liu HY, Xing H, Ma Y. Research progress on substrate species degraded by laccase [J]. Biotechol Bull, 2017, 33 (9): 1-6]
11. Ca?as AI, Camarero S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes [J]. Biotechnol Adv, 2010, 28 (6): 694-705
12. Sun K, Kang FX, Waigi MG, Gao YZ, Huang QG. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid [J]. Environ Pollut, 2017, 220: 105-111
13. Si J, Peng F, Cui BK. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens [J]. Bioresour Technol, 2013, 128: 49-57
14. Murugesan K, Kim Y, Jeon J, Chang Y. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum [J]. J Hazard Mater, 2009, 168 (1): 523-529
15. Rosconi F, Fraguas LF, Martínez-Drets G, Castro-Sowinski S. Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti [J]. Enzyme Microb Technol, 2005, 36 (5-6): 800-807
16. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD. Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater [J]. Water Res, 2007, 41 (15): 3281-3288
17. 罗爽, 谢天, 刘忠川, 王刚刚. 漆酶/介体系统研究进展[J]. 应用与环境生物学报, 2015, 21 (6): 987-995 [Luo S,Xie T,Liu ZC,Wang GG. Laccase-mediator system: a review [J]. Chin J Appl Environ Biol, 2015, 21 (6): 987-995]
18. Ashe B, Nguyen LN, Hai FI, LD, van de Merwe JP, Leusch FDL, Price WE, Nghiem LD. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity [J]. Int Biodeterior Biodegrad, 2016, 113: 169-176
19. Luo Q, Wang ZY, Feng MB, Chiang D, Woodward D, Liang ST, Lu JH, Huang QG. Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems: the impact of metal ions [J]. Environ Pollut, 2017, 224: 649-657
20. Zhuo R, He F, Zhang XY, Yang Y. Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents [J]. Biochem Eng J, 2015, 93: 63-72
21. Lu C, Cao L, Liu R, Lei YR, Ding GJ. Effect of common metal ions on the rate of degradation of 4-nitrophenol by a laccase-Cu2+ synergistic system [J]. J Environ Manage, 2012, 113: 1-6
22. Xu XQ, Huang XH, Liu D, Liu J, Ye XY, Yang J. Inhibition of metal ions on Cerrena sp. laccase: kinetic, decolorization and fluorescence studies [J]. J Taiwan Inst Chem Eng, 2018, 84: 1-10
23. Hu X, Wang CY, Wang L, Zhang RR, Chen H. Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis [J]. World J Microbiol Biotechnol, 2014, 30 (4): 1285-1290
24. 任大军, 许琴, 张元元, 张淑琴, 张惠灵. 漆酶/ABTS介体系统对蒽的降解研究[J]. 工业安全与环保, 2013, 39 (12): 1-3 [Ren DJ, Xu Q, Zhang YY, Zhang SQ, Zhang HL. Degradation of anthracene in wastewater by Laccase/ABTS mediator system [J]. Ind Saf Environ Prot, 2013, 39 (12): 1-3
25. Zhang C, Zhang S, Diao HW, Zhao HZ, Zhu XY, Lu FX, Lu ZX. Purification and Characterization of a temperature- and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of Malachite Green [J]. J Agric Food Chem, 2013, 61 (23): 5468-5473
26. Hao LY, Wang R, Fang KJ, Liu JQ. The influence of auxiliary chemicals on the decolorization of reactive blue dye by laccase [J]. Adv Mater Res, 2013, 709: 53-57
27. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics [J]. Biochemistry, 2002, 41 (23): 7325-73
28. Bao WH, Peng RH, Zhang Z, Tian YS, Zhao W, Xue Y, Gao JJ, Yao QH. Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena [J]. Mol Biol Rep, 2012, 39 (4): 3871-3877
29. Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AAEA. Characterization and kinetic properties of the purified Trematosphaeria mangrovei laccase enzyme [J]. Saudi J Biol Sci, 2013, 20 (4): 373-381
30. Yan JP, Chen DD, Yang E, Niu JZ, Chen YH, Chagan I. Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization [J]. Int Biodeterior Biodegrad, 2014, 93: 186-194
31. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications [J]. Nat Biotechnol, 2002, 20 (1): 87-90
32. Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus [J]. FEMS Microbiol Lett, 2002, 206 (1): 69-74
33. Rodríguez Couto S, Sanromán M, Gübitz GM. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsute [J]. Chemosphere, 2005, 58 (4): 417-422
34. Ma J, Xu ZS, Wang F, Xiong AS. Isolation, purification and characterization of two laccases from carrot (Daucus carota L.) and their response to abiotic and metal ions stresses [J]. Protein J, 2015, 34 (6): 444-452
35. Manavalan A, Manavalan T, Murugesan K, Kutzner A, Thangavelu KP, Heese K. Characterization of a solvent, surfactant and temperature-tolerant laccase from Pleurotus sp. MAK-II and its dye decolorizing property [J]. Biotechnol Lett, 2015, 37 (12): 2403-2409
36. Kim Y, Nicell JA. Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A [J]. Bioresour Technol, 2006, 97 (12): 1431-1442
37. Garcia HA, Hoffman CM, Kinney KA, Lawler DF. Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent [J]. Water Res, 2011, 45 (5): 1921-1932
38. Zeng SQ, Qin XL, Xia LM. Degradation of the herbicide isoproturon by laccase-mediator systems [J]. Biochem Eng J, 2017, 119: 92-100
39. Hu MR, Chao YP, Zhang GQ, Xue ZQ, Qian SJ. Laccase-mediator system in the decolorization of different types of recalcitrant dyes [J]. J Ind Microbiol Biotechnol, 2009, 36 (1): 45-51
40. Orlikowska M, de J. Rostro-Alanis M, Bujacz A, Hernández-Luna C, Rubio R, Parra R, Bujacz G. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus [J]. Int J Biol Macromol, 2018, 107: 1629-1640


 HAN Junli,et al..Purification and Characterization of Fungal Laccase from Ganoderma lucidum Strain TR6[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):99.
[2]王维乐,牟志美,张淑君,等.响应面法优化Paraconiothyrium variabile GHJ-4产漆酶发酵条件[J].应用与环境生物学报,2011,17(03):321.[doi:10.3724/SP.J.1145.2011.00321]
 WANG Weile,MU Zhimei,ZHANG Shujun,et al.Optimization of Fermentation Conditions of Paraconiothyrium variabile GHJ-4 for Laccase Production by Response Surface Methodology[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):321.[doi:10.3724/SP.J.1145.2011.00321]
 SI Jing,CUI Baokai,He Shuai,et al.Optimization of Conditions for Laccase Production by Perenniporia subacida and Its Application in Dye Decolorization[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):736.[doi:10.3724/SP.J.1145.2011.00736]
 LIU Yueping,WANG Zijian,CUI Kai,et al.Isolation, Identification, Culture Conditions, and Enzyme Production of a Wild Mushroom Lepista sp.[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):804.[doi:10.3724/SP.J.1145.2012.00804]
 QIN Gaijuan,MA Jifeng,CHEN Qingjun,et al.Biological characteristics and enzyme production of a newly recorded species of Agrocybe[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):148.[doi:10.3724/SP.J.1145.2014.00148]
 LUO Shuang,XIE Tian,LIU Zhongchuan,et al.Laccase-mediator system: a review[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):987.[doi:10.3724/SP.J.1145.2015.09021]
[7]夏玉林 冯 娟 李 荷.响应面法优化漆酶基因lac1338表达漆酶的发酵条件[J].应用与环境生物学报,2016,22(02):219.[doi:10.3724/SP.J.1145.2015.06023]
 XIA Yulin,FENG Juan & LI He**.Optimizing fermentation conditions for the expression of laccase gene lac1338by response surface methodology*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):219.[doi:10.3724/SP.J.1145.2015.06023]
[8]沈柯宇,张西蓓,秦 澎,等.4种重金属对灵芝漆酶活性及转录表达的影响[J].应用与环境生物学报,2017,23(03):448.[doi:2016.08004]
 SHEN Keyu,ZHANG Xibei,QIN Peng,et al.Enzymatic activity and transcription of Ganoderma lucidum laccases following treatment with four heavy metals[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):448.[doi:2016.08004]
[9]胡渤洋,王寿南,陈青君,等.一种白腐真菌的分离、鉴定、培养及产漆酶条件[J].应用与环境生物学报,2018,24(02):367.[doi: 10.19675/j.cnki.1006-687x.2017.05024]
 HU Boyang,WANG Shounan,CHEN Qingjun,et al.Isolation, identification, culture conditions, and laccase production of white rot fungus[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):367.[doi: 10.19675/j.cnki.1006-687x.2017.05024]
[10]秦澎,李津,辜运富,等.香菇生长发育过程中漆酶基因家族的转录表达[J].应用与环境生物学报,2018,24(02):379.[doi: 10.19675/j.cnki.1006-687x.2017.03010]
 QIN Peng,LI Jin,GU Yunfu,et al.Transcriptional expression profiles of the laccase gene family in different development stages of Lentinus edodes[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):379.[doi: 10.19675/j.cnki.1006-687x.2017.03010]

更新日期/Last Update: 2019-08-25