|本期目录/Table of Contents|

[1]祖金珊,徐世文,陆信曜,等.整合型1,2,4-丁三醇重组菌的构建及共底物发酵[J].应用与环境生物学报,2019,25(04):966-971.[doi:10.19675/j.cnki.1006-687x.2018.11006]
 ZU Jinshan,XU Shiwen,et al.Construction of a 1,2,4-butanetriol-integrated strain and fermentation of its co-substrate[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):966-971.[doi:10.19675/j.cnki.1006-687x.2018.11006]
点击复制

整合型1,2,4-丁三醇重组菌的构建及共底物发酵
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
966-971
栏目:
研究论文
出版日期:
2019-08-25

文章信息/Info

Title:
Construction of a 1,2,4-butanetriol-integrated strain and fermentation of its co-substrate
作者:
祖金珊;?徐世文;?陆信曜;?宗红;?诸葛斌
1江南大学糖化学与生物技术教育部重点实验室 无锡 214122 2江南大学工业生物技术教育部重点实验室,生物工程学院,工业微生物研究中心 无锡 214122
Author(s):
ZU Jinshan1;? 2;? XU Shiwen2;? LU Xinyao1;? 2;? ZONG Hong1;? 2 & ZHUGE Bin1;? 2**
1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China 2Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
1;?2;?4-丁三醇;?大肠杆菌;?磷酸转移酶系统;?混糖发酵;?整合表达
Keywords:
1;?2;?4-butanetriol;? Escherichia coli;? phosphotransferase system;? mixed-sugar fermentation;? integrated expression
分类号:
Q78 : TQ921
DOI:
10.19675/j.cnki.1006-687x.2018.11006
摘要:
1,2,4-丁三醇(BT)是重要的非天然化学品. 为构建整合型BT合成菌株,实现木糖、葡萄糖共底物发酵,通过Red系统将基因kivD、xdh整合至Escherichia coli基因组的xylAB、ptsHI、ptsG、crr位点,并尝试利用廉价的乳糖替代IPTG诱导外源基因表达. 结果表明,外源基因整合至xylAB后,生物量降低28%,重组菌Escherichia coli W021能够代谢木糖合成BT(0.7 g/L). 添加葡萄糖为共底物后生物量提高36%,但碳分解代谢抑制作用限制了木糖的代谢,BT产量降低14%. 进一步整合代谢基因至不同的磷酸转移酶系统(PTS)位点,其中整合至ptsHI基因后BT产量最高,达到2.8 g/L. 优化葡萄糖、木糖浓度后,BT产量提高到3.6 g/L,进一步优化乳糖替代IPTG后BT产量为1.9 g/L. 最后经发酵罐优化,BT产量提高到3.9 g/L,转化率为0.3 mol/mol. 本研究构建整合型菌株在廉价乳糖诱导下共底物发酵合成BT,为后续放大研究提供了借鉴.(图6 表2 参24)
Abstract:
1,2,4-Butanetriol (BT) is an important non-natural chemical. The exogenous genes kivD and xdh were integrated into the xylAB site of the Escherichia coli genome by the Red system to construct a BT-producing strain E. coli W021. To realize glucose/xylose co-fermentation, kivD and xdh were respectively integrated into ptsHI, ptsG, and crr sites in E. coli W021 to obtain recombinant strains E. coli W031, E. coli W032, and E. coli W033. Non-toxic and cheap lactose was used to replace IPTG to induce the expression of exogenous genes. The results showed the recombinant strain E. coli W021 produced 0.7 g/L BT from xylose, with a 28% decrease in biomass. After adding glucose as a co-substrate, the biomass increased by 36%. However, xylose metabolism was inhibited due to carbon catabolite repression (CCR), resulting in a BT production decrease of 14%. Upon modifying the phosphotransferase system (PTS) to alleviate the CCR effect, E.coli W031 produced BT at the highest titer of 2.8 g/L. BT production was further increased to 3.6 g/L by optimizing glucose and xylose concentrations. Additionally, using lactose as the inducer instead of IPTG yielded 1.9 g/L of BT. Finally, the BT yield reached 3.9 g/L and the conversion rate was 0.3 mol/mol during batch fermentation. In this study, an integrated strain was used to synthesize BT induced by lactose under co-substrate fermentation, thus providing a reference for subsequent amplification studies.

参考文献/References:

1 Abdelghany SE, Day I, Heuberger AL, Broeckling CD, Reddy ASN. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes [J]. Metab Eng, 2013, 20 (5): 109-120
2 Niu W, Molefe MN, Frost JW. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol [J]. J Am Chem Soc, 2003, 125 (43): 12998-12999
3 Ren T, Liu DX. Synthesis of cationic lipids from 1,2,4-butanetriol [J]. Tetrahedron Lett, 1999, 40 (2): 209-212
4 Valdehuesa KNG, Liu HW, Ramos KRM, Si JP, Nisola GM, Lee WK, Chung WJ. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli [J]. Process Biochem, 2014, 49 (1): 25-32
5 孙雷, 杨帆, 朱泰承, 李兴华, 孙红兵, 李寅, 许正宏, 张延平. 大肠杆菌合成1,2,4-丁三醇的途径优化[J]. 生物工程学报, 2016, 32 (1): 51-63 [Sun L, Yang F, Zhu TC, Li XH, Sun HB, Li Y, Xu ZH, Zhang YP. Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli [J]. Chin J Biotech, 2016, 32 (1): 51-63]
6 Zhang YK, Li TM, Liu JJ. Low temperature and glucose enhanced T7 RNA polymerase-based plasmid stability for increasing expression of glucagon-like peptide-2 in Escherichia coli [J]. Protein Expr Purif, 2003, 29 (1): 132-139
7 G?rke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients [J]. Nat Rev Microbiol, 2008, 6 (8): 613-624
8 Dien BS, Nichols NN, Bothast RJ. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid [J]. J Ind Microbiol Biotechnol, 2002, 29 (5): 221-227
9 何姝颖, 诸葛斌, 陆信曜, 宗红, 陈雯, 宋健. 副产物途径的缺失对大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 微生物学通报, 2017, 44 (1): 30-37 [He SY, Zhuge B, Lu XY, Zong H, Chen W, Song J. Influence of the deficiency of by-product pathways on biosynthesis of D-1,2,4-butanetriol in Escherichia coli [J]. Microbiol Chin, 2017, 44 (1): 30-37]
10 Berghall S, Hilditch S, Penttila M, Richard P. Identification in the mould Hypocrea jecorina of a gene encoding an NADP+: D-xylose dehydrogenase [J]. FEMS Microbiol Lett, 2007, 277 (2): 249-253
11 张寅. 乳酸乳球菌α-酮异戊酸脱羧酶的性质研究[D]. 北京: 北京林业大学, 2014 [Zhang Y. Characterization and application of α-ketoisovalerate decarboxylase from Lactococcus lactis [D]. Beijing: Beijing Forestry University, 2014]
12 Lien OG. Determination of gluconolactone, galactonolactone, and their free acids by hydroxamate method [J]. Anal Chem, 1959, 31 (8): 1363-1366
13 Vinuselvi P, Lee SK. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose [J]. Enzyme Microb Technol, 2012, 50 (1): 1-4
14 肖梦榕, 张梁, 刘双平, 石贵阳. 大肠杆菌PTS系统改造及重组菌生长性能测定[J]. 生物工程学报, 2014, 30 (10): 1561-1572 [Xiao MR, Zhang L, Liu SP, Shi GY. Transformation of phosphotransferase system in Escherichia coli [J]. Chin J Biotech, 2014, 30 (10): 1561-1572]
15 Desai TA, Rao CV. Regulation of arabinose and xylose metabolism in Escherichia coli [J]. Appl Environ Microbiol, 2010, 76 (5): 1524-1532
16 Flores S, Flores N, De AR, González A, Escalante A, Sigala JC, Gosset G, Bolívar F. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis [J]. J Mol Microbiol Biotechnol, 2006, 10 (1): 51-63
17 Xia T, Eiteman MA, Altman E. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains [J]. Microb Cell Factories, 2012, 11 (1): 77
18 Escalante A, Salinas CA, Gosset G, Bolívar F. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation [J]. Appl Microbiol Biotechnol, 2012, 94 (6): 1483-1494
19 吴一凡, 张双全, 高秀玉, 刘晓宇. 乳糖诱导pET载体表达重组蛋白的研究[J]. 南京师大学报(自然科学版), 2002, 25 (1): 89-93 [Wu YF, Zhang SQ, Gao XY, Liu XY. Expression of B Lymphocyte Stimulator (BLyS) from pET plasmid using lactose as inducer [J]. J Nanjing Norm univ (Nat Sci Ed), 2002, 25 (1): 89-93]
20 Ammar EM, Wang X, Rao CV. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose [J]. Sci Rep, 2018, 8 (1): 10.1038/s 41598-017-18704-0
21 杨君宁. 大肠埃希氏菌To1C与OmpF、OmpC及其双调节系统相互关系的研究[D]. 广州: 中山大学, 2010 [Yang JN. Relationship of TolC with OmpF, OmpC and their two-component system in Escherichia coli [D]. Guangzhou: Sun Yat-sen University, 2010]
22 杨艳坤, 王芬, 孙杨, 刘秀霞, 白仲虎. 不同溶氧对谷氨酸棒杆菌代谢的影响[J]. 微生物学通报, 2016, 43 (11): 2540-2549 [Yang YK, Wang F, Sun Y, Liu XX, Bai ZH. Effect of different dissolved oxygen concentrations on metabolism in Corynebac terium glutamicum [J]. Microbiol Chin, 2016, 43 (11): 2540-2549]
23 Wang X, Xu NN, Hu SW, Yang JM, Gao Q, Xu S, Chen KQ, Ouyang PK. D-1,2,4-butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli [J]. Bioresour Technol, 2017, 250: 406-412
24 Sun L, Yang F, Sun HB, Zhu TC, Li XH, Li Y, Xu ZH, Zhang YP. Synthetic pathway optimization for improved 1,2,4-butanetriol production [J]. J Ind Microbiol Biotechnol, 2016, 43 (1): 1-12

相似文献/References:

[1]刘振盈,颜望明,郑雷.多能硫杆菌1,5-二磷酸核酮糖羧化酶/加氧酶的酶学特征及基因检测[J].应用与环境生物学报,1997,3(04):361.
 Liu Zhenying,Yan Wangming,Zheng Lei.ENZYME CHARACTERIZATION AND GENE IDENTIFICATION OF RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXGENASE FROM THIOBACILLUS VERSUTUS[J].Chinese Journal of Applied & Environmental Biology,1997,3(04):361.
[2]方慧英,张成,诸葛斌,等.产1,3-丙二醇新型基因工程菌的构建[J].应用与环境生物学报,2009,15(05):708.[doi:10.3724/SP.J.1145.2009.00708]
 FANG Huiying,ZHANG Cheng,ZHUGE Bin & ZHUGE Jian.Construction of Novel Recombinant Strains Capable of Producing 1,3-propanediol[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):708.[doi:10.3724/SP.J.1145.2009.00708]
[3]石瑛,杜青平,李砧,等.1,4-二氯苯在褐土中的残留量变化及对几种土壤酶活性的影响[J].应用与环境生物学报,2012,18(02):229.[doi:10.3724/SP.J.1145.2012.00229]
 SHI Ying,DU Qingping,LI Zhen,et al.Change in 1,4-dichlorobenzene Residue and Its Effects on Soil Enzyme Activities in Cinnamon Soil[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):229.[doi:10.3724/SP.J.1145.2012.00229]
[4]聂玲燕,方慧英,诸葛斌,等.克雷伯氏菌产1,3-丙二醇菌株选育及甘油脱水酶基因转录分析[J].应用与环境生物学报,2013,19(01):25.[doi:10.3724/SP.J.1145.2013.00025]
 NIE Lingyan,FANG Huiying,ZHUGE Bing,et al.Breeding of Klebsiella for Production of 1,3-propanediol and Transcription Analysis of Glycerol Dehydratase Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):25.[doi:10.3724/SP.J.1145.2013.00025]
[5]潘红玫,陈斌,李甫,等.迭鞘石斛的化学成分(Ⅱ)[J].应用与环境生物学报,2013,19(06):952.[doi:10.3724/SP.J.1145.2013.00952]
 PAN Hongmei,CHEN Bin,LI Fu,et al.Chemical Constituents from the Stems of Dendrobium denneanum (Ⅱ)[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):952.[doi:10.3724/SP.J.1145.2013.00952]
[6]杜星星,诸葛斌,陆信曜,等.budC缺失对克雷伯氏菌联产3-羟基丙酸和1,3-丙二醇的影响[J].应用与环境生物学报,2014,20(03):371.[doi:10.3724/SP.J.1145.2014.12031]
 DU Xingxing,ZHUGE Bin,LU Xinyao,et al.Effect of budC deficiency on co-product 3-hydroxypropionic acid and 1,3-propandediol by Klebsiella pneumoniae[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):371.[doi:10.3724/SP.J.1145.2014.12031]
[7]吴金鑫,宗红,陆信曜,等.高效催化合成3-羟基丙酸的菌株特性[J].应用与环境生物学报,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
 WU Jinxin,ZONG Hong,LU Xinyao,et al. Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):804.[doi:10.3724/SP.J.1145.2014.03003]
[8]苏江伟,方慧英,陆信曜,等.强化丙酮酸-CO2途径对克雷伯氏菌合成1,3-丙二醇的影响[J].应用与环境生物学报,2015,21(03):441.[doi:10.3724/SP.J.1145.2014.12020]
 SU Jiangwei,FANG Huiying,LU Xinyao,et al.Effect of strengthening the pathway of pyruvate to CO2 on the biosynthesis of 1,3-propanediol by Klebsiella pneumoniae[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):441.[doi:10.3724/SP.J.1145.2014.12020]
[9]张白梅,徐辉,曹瑜,等.紫外诱变选育高产丁二酮乳酸菌株及其低成本发酵优化[J].应用与环境生物学报,2017,23(03):437.[doi:2015.05032]
 ZHANG Baimei,XU Hui,CAO Yu,et al.Ultraviolet mutagenic selection of a lactobacillus with high productivity of butanedione and low cost optimization of fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):437.[doi:2015.05032]
[10]唐海,姚银安,张国燕,等.异源表达胡杨PeBAK1;1基因增强烟草对Pst DC3000的抗性[J].应用与环境生物学报,2018,24(02):335.[doi: 10.19675/j.cnki.1006-687x.2017.10018]
 TANG Hai,YAO Yinan,ZHANG Guoyan,et al.Heterologous overexpression of Populus euphratica BAK1;1 gene enhanced resistance to Pst DC3000 in tobacco[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):335.[doi: 10.19675/j.cnki.1006-687x.2017.10018]

更新日期/Last Update: 2019-08-25