|本期目录/Table of Contents|

[1]梁川,王洁茹,诸葛斌,等.基于回补途径的TCA循环改造对克雷伯氏菌生长和甘油代谢的影响[J].应用与环境生物学报,2019,25(04):972-976.[doi:10.19675/j.cnki.1006-687x.2018.11012]
 LIANG Chuan,WANG Jieru,et al.TCA cycle modification based on the anaplerotic reaction and its effects on growth and glycerol metabolism in Klebsiella pneumonia[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):972-976.[doi:10.19675/j.cnki.1006-687x.2018.11012]
点击复制

基于回补途径的TCA循环改造对克雷伯氏菌生长和甘油代谢的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
972-976
栏目:
研究论文
出版日期:
2019-08-25

文章信息/Info

Title:
TCA cycle modification based on the anaplerotic reaction and its effects on growth and glycerol metabolism in Klebsiella pneumonia
作者:
梁川;?王洁茹;?诸葛斌;?陆信曜;?宗红
1江南大学糖化学与生物技术教育部重点实验室 无锡 214122 2江南大学工业生物技术教育部重点实验室,生物工程学院,工业微生物研究中心 无锡 214122
Author(s):
LIANG Chuan1;? 2;? WANG Jieru2;? ZHUGE Bin1;? 2**;? LU Xinyao1;? 2 & ZONG Hong1;? 2
1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China 2 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
回补途径;?磷酸烯醇式丙酮酸羧化酶;?柠檬酸合成酶;?TCA循环;?1;?3-丙二醇
Keywords:
anaplerotic reaction;? phosphoenolpyruvate carboxylase;? citrate synthase;? TCA cycle;? 1;?3-propanediol
分类号:
Q78 : TQ921
DOI:
10.19675/j.cnki.1006-687x.2018.11012
摘要:
回补途径和TCA循环在克雷伯氏菌(Klebsiella pneumoniae)的中心代谢中扮演着十分重要的角色. 通过过表达回补途径的关键酶磷酸烯醇式丙酮酸羧化酶(PPC)和柠檬酸(TCA)循环的关键酶柠檬酸合成酶(GLTA)将磷酸烯醇式丙酮酸(PEP)和乙酰辅酶A节点的碳流引入TCA循环,以考察基于回补途径的TCA循环强化对K. pneumoniae生长和甘油代谢的影响. 结果显示:单独过表达ppc或gltA基因,TCA循环还原和氧化分支的中间代谢产物琥珀酸和α-酮戊二酸分别增加了8.3倍和1.2倍,甘油利用能力明显增强,除2,3-丁二醇外,其他副产物积累量均有所下降,但1,3-PDO产量分别降低了23.3%、5.9%. 共表达ppc和gltA基因后,与对照菌相比,生物量降低了35.7%,甘油利用能力进一步增强,1,3-丙二醇产量提高了10.2%,所有副产物积累量均有所减少;与单独过表达ppc或gltA基因相比,乙醇、乳酸、乙酸积累量未有明显变化,但生物量略有提高,2,3-丁二醇积累量显着降低. 上述结果表明通过共表达磷酸烯醇式丙酮酸羧化酶和柠檬酸合成酶强化TCA循环能够提高菌株的甘油利用能力,弱化副产物合成,强化1,3-丙二醇的合成. (图4 表2 参19)
Abstract:
The anaplerotic reaction and the tricarboxylic acid (TCA) cycle play important roles in the central metabolism of Klebsiella pneumoniae. Phosphoenolpyruvate carboxylase (PPC) and citrate synthase (GLTA) are key enzymes of the anaplerotic reaction and TCA cycle, respectively. This study aimed to investigate the effects of strengthening the TCA cycle on cell growth and glycerol metabolism of recombinant K. pneumoniae based on the anaplerotic reaction. To fulfill these objectives, PPC encoded by ppc and GLTA encoded by gltA were expressed individually or co-expressed in K. pneumoniae. Overexpressing ppc and gltA genes led to a 8.3-fold and 1.2-fold increase in the production of succinate and α-ketoglutarate, respectively. Succinate and α-ketoglutarate are the intermediate metabolites of the reductive and oxidative branches of the TCA cycle. The glycerol utilization ability of the recombinants was significantly enhanced. The accumulation of by-products—except 2,3-butanediol—decreased, but the yield of 1,3-propanediol (1,3-PDO) was decreased by 23.3% and 5.9%, respectively. Compared to the control strain, co-expression of ppc and gltA resulted in a 35.7% decrease in biomass, but the glycerol utilization ability was further enhanced and 1,3-PDO titer was increased by 10.2%. In addition, the accumulation of all by-products decreased. Production of ethanol, lactate, and acetate did not significantly differ between the strains that overexpressed ppc or gltA; however, the biomass increased slightly and the accumulation of 2,3-butanediol decreased significantly. Enhancing the TCA cycle by co-overexpressing ppc and gltA could improve the glycerol utilization ability of recombinant K. pneumoniae, weaken the synthesis of by-products, and enhance the production of 1,3-PDO.

参考文献/References:

1. Sun D, Yamada Y, Sato S, Ueda W. Glycerol as a potential renewable raw material for acrylic acid production [J]. Green Chem, 2017, 19 (14): 3186-3213
2. Kong PS, Aroua MK, Daud WMAW. Conversion of crude and pure glycerol into derivatives: a feasibility evaluation [J]. Renew Sust Energ Rev, 2016, 63: 533-555
3. Chen L, Ma C, Wang R, Yang J, Zheng H. Deletion of ldhA and aldH genes in Klebsiella pneumoniae to enhance 1,3-propanediol production [J]. Biotechnol Lett, 2016, 38 (10): 1769-1774
4. Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol, 2016, 100 (6): 2775-2784
5. Kumar V, Durgapal M, Sankaranarayanan M, Somasundar A, Rathnasingh C, Song H, Seung D, Park S. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B [J]. Bioresour Technol, 2016, 214: 432-440
6. Wang M, Zhou Y, Tan T. Co-factor engineering for enhanced production of diols by Klebsiella pneumoniae from co-substrate [J]. Biotechnol J, 2017, 12 (11): 1700176
7. 苏江伟, 方慧英, 陆信曜, 宗红, 李娜, 诸葛斌, 诸葛健. 强化丙酮酸-CO2途径对克雷伯氏菌合成1,3-丙二醇的影响[J]. 应用与环境生物学报. 2015, 21 (3): 441-446 [Su jiangwei, Fang HY, Lu XY, Zong H, Li N, Zhuge B, Zhuge J. Effect of strengthening the pathway of pyruvate to CO2 on the biosynthesis of 1,3-propanediol by Klebsiella pneumoniae [J]. Chin J Appl Environ Biol, 2015, 21 (3): 441-446]
8. 刘陈才, 葛喜珍, 田平芳. 过表达生长相关基因对肺炎克雷伯氏菌甘油代谢的影响[J]. 北京化工大学学报: 自然科学版. 2016, 43 (2): 53-57 [Liu CC, Ge XZ, Tian PF. Effects of growth-related gene overexpression on glycerol metabolism in Klebsiella pneumoniae [J]. J B Univ Chem Techonol (Nat Sci Ed), 2016, 43 (2): 53-57]
9. Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H. Deleting pck improves growth and suppresses by-product formation during 1,3-propanediol fermentation by Klebsiella pneumoniae [J]. J Appl Microbiol, 2017, 123 (3): 678-687
10. Lu XY, Ren SL, Lu JZ, Zong H, Song J, Zhuge B. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect [J]. J Appl Microbiol, 2018, 124 (3): 682-690
11. 刘情, 王小婉, 诸葛斌, 陆信曜, 宗红, 方慧英, 宋健. 基因敲除弱化产1,3-丙二醇Klebsiella pneumoniae荚膜多糖的合成[J]. 化工进展. 2017, 36 (9): 3447-3452 [Liu Q, Wang XW, Zhuge B, Lu XY, Zong H, Fang HY, Song J. Reducing the capsular polysaccharide synthesis of Klebsiella pneumoniae in 1,3-propanediol fermentation by genes knocking-out [J]. Prog Chem, 2017, 36 (9): 3447-3452]
12. Vuoristo KS, Mars AE, Sanders JPM, Eggink G, Weusthuis RA. Metabolic engineering of TCA cycle for production of chemicals [J]. Trends Biotechnol, 2016, 34 (3): 191-197
13. Litsanov B, Kabus A, Brocker M, Bott M. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum [J]. Microb Biotechnol, 2012, 5 (1): 116-128
14. Wang D, Li Q, Mao Y, Xing J, Su Z. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli [J]. Appl Microbiol Biotechnol, 2010, 87 (6): 2025-2035
15. Biebl H, Zeng AP, Menzel K, Deckwer WD. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol, 1998, 50 (1): 24-29
16. Yang TH, Rathnasingh C, Lee HJ, Seung D. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca [J]. J Biotechnol, 2014, 172: 59-66
17. Deng Y, Ma N, Zhu K, Mao Y, Wei X, Zhao Y. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli [J]. Metab Eng. 2018, 46: 28-34
18. Zhang Y, Li Y, Du C, Liu M, Cao Z. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae [J]. Metab Eng, 2006, 8 (6): 578-586
19. Szymanowska-Powalowska D, Kubiak P. Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1 [J]. Appl Microbiol Biotechnol, 2015, 99 (7): 3179-3189
20.

更新日期/Last Update: 2019-08-25