|本期目录/Table of Contents|

[1]陈红芬,任洪艳,刘方舟,等.小球藻和活性污泥共培养体系处理养殖废水[J].应用与环境生物学报,2019,25(04):950-958.[doi:10.19675/j.cnki.1006-687x.2018.11027]
 CHEN Hongfen,REN Hongyan,et al.Treatment of aquaculture wastewater using Chlorella vulgaris and an activated sludge co-culture system[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):950-958.[doi:10.19675/j.cnki.1006-687x.2018.11027]
点击复制

小球藻和活性污泥共培养体系处理养殖废水
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
950-958
栏目:
研究论文
出版日期:
2019-08-25

文章信息/Info

Title:
Treatment of aquaculture wastewater using Chlorella vulgaris and an activated sludge co-culture system
作者:
陈红芬;?任洪艳;?刘方舟;?阮文权
1江南大学环境与土木工程学院 无锡 214122 2江苏省厌氧生物技术重点实验室 无锡 214122
Author(s):
CHEN Hongfen1;? 2;? REN Hongyan1;? 2**;? LIU Fangzhou1;? 2 & RUAN Wenquan1;? 2
1 School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China 2 Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
固定化;?藻菌共培养;?废水处理;?小球藻;?活性污泥
Keywords:
immobilization;? algal-bacterial co-culture;? wastewater treatment;? Chlorella vulgaris;? activated sludge
分类号:
X703
DOI:
10.19675/j.cnki.1006-687x.2018.11027
摘要:
为提高藻菌共培养体系对养殖废水的处理效果,优选最佳的共培养方式和处理时间,研究普通小球藻(UTEX2714)和活性污泥在5种共培养体系中对污染物的去除效率[游离小球藻和游离活性污泥(Sc + Sa),游离小球藻和固定化活性污泥(Sc + Ia),游离活性污泥和固定化小球藻(Sa + Ic),固定化小球藻和固定化活性污泥(Ic + Ia),藻菌共固定[I(c + a)](藻菌:小球藻和活性污泥),考察体系的稳定性和胶球的可重复利用性. 结果显示:游离活性污泥和固定化小球藻共培养体系在48 h对养殖废水的处理效果最佳,对氨氮(NH4+-N)、总氮(TN)、总磷(TP)、化学需氧量(COD)的去除率分别为93.89%、91.95%、97.53%、93.41%;细胞比增长速率0.214/h,均大于其他4组共培养体系. 稳定性试验中胶球在使用一个周期(48 h)后用CaCl2再次加固可提高系统的稳定性,可稳定运行8个周期,NH4+-N、TP的去除率分别在81.59%-93.69%、84.23%-98.74%. 本研究表明Sa + Ic共培养体系运行48 h能有效处理养殖废水;稳定性试验中,加固方法能有效保证系统稳定运行;结果可为藻菌共培养体系处理水产养殖废水的实际应用提供基础数据. (图6 表3 参38 附图2 附表1)
Abstract:
This study aimed to optimize culturing methods to improve aquaculture wastewater treatment using a co-culture system of algae and bacteria. The removal efficiency of pollutants in co-culture systems of Chlorella vulgaris (UTEX2714) and activated sludge were studied using the following five groups: suspended C. vulgaris and suspended activated sludge (Sc + Sa), suspended C. vulgaris and immobilized activated sludge (Sc + Ia), suspended activated sludge and immobilized C. vulgaris (Sa + Ic), immobilized C. vulgaris and immobilized activated sludge (Ic + Ia), algae and bacteria fixed together (algae: C. vulgaris and activated sludge; I(c + a)). The stability of the system and the reusability of the rubber ball were tested. The results showed that the Sa+Ic co-culture system had the best treatment performance on aquaculture wastewater after 48 h. The removal efficiency of ammonia nitrogen (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) after 48 h was 93.89%, 91.95%, 97.53%, and 93.41%, respectively. The specific growth rate of cells was 0.214/h, which was higher than that of the other four co-culture systems. In the stability test, the stability of the system could be improved by reinforcing the rubber balls with CaCl2 after one cycle (48 h). The system can remain stable for eight cycles, and the removal rates of NH4+-N and TP were 81.59%-93.69% and 84.23%-98.74%, respectively. The results suggest that the Sa + Ic co-culture system can effectively treat aquaculture wastewater. Using the stability test, the reinforcement method could maintain the stability of the operational system, ensuring treatment efficiency.

参考文献/References:

1. Cao L, Naylor R, Henriksson P, Leadbitter D, Metian M, Troell M. China’s aquaculture and the world’s wild fisheries [J]. Science, 2015, 347 (6218): 133-135
2. Md F, Yusoff, Sanjoy B. Biological approaches in management of nitrogenous compounds in aquaculture systems [J]. Dyn Biochem Proc Biotechnol Mol Biol, 2011, 5 (1): 21-31
3. Patai C, Saul P, Vanvimon S. Applications of microalgal biotechnology for disease control in aquaculture [J]. Biology, 2018, 7 (2): 24-30
4. 陈谦, 张新雄, 赵海, 官家发. 用于水产养殖的微生态制剂的研究和应用进展[J]. 应用与环境生物学报, 2012, 18 (3): 524-530 [Chen Q, Zhang XX, Zhao H, Guan JF. Advance in research and application of microbial ecological agent in aquaculture [J]. Chin J Environ Biol, 2012, 18 (3): 524-530]
5. Wisniewski K, Kowalski M, Makinia J. Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors [J]. Water Res, 2018, 142: 55-64
6. Karya NG, Np VD S, Lens PN. Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater [J]. Bior Technol, 2013, 134 (2): 244-250
7. Huang XH, Chang-Ling LI, Lian Z, Liu CW, Wang RX. Effects of the immobilized microalgae on the quantity dynamics of vibrio in the shrimp ponds [J]. Acta Hydrobiol Sin, 2005, 29 (6): 684-688
8. Bērzin? A, Mutere O, ?vinka R, ?vinka V. Interaction of oily water with floating porous ceramic and immobilized microorganisms [J]. Key Eng Mat, 2018, 762: 69-74
9. Rao LN. Immobilized bioreactors for the treatment of industrial wastewater – A comparative study[J]. Int J Eng Sci Res Technol, 2013, 2 (10): 3021-3027
10. Shen Y, Gao J, Li L. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal [J].Bior Technol, 2017, 243: 905-913
11. Liang Z , Liu Y , Ge F , Xu Y , Tao N , Peng F . Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis [J]. Chemosphere, 2013, 92 (10): 1383-1389
12. Mujtaba G, Lee K. Advanced treatment of wastewater using symbiotic coculture of microalgae and bacteria [J]. Appl Chem Eng, 2016, 27: 1-9
13. Praveen P, Loh KC. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis [J]. Appl Microbiol Biotechnol, 2015, 99 (23): 10345-10354
14. Hoober JK. The chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use [J]. Science, 2001, 246 (4936): 1503-1504.
15. 张丽彬, 王启山, 徐新惠, 丁丽丽, 任洪强. 乙醇法测定浮游植物叶绿素a含量的讨论[J]. 中国环境监测, 2008, 24 (6): 9-10 [Zhang LS, Wang QS, Xu XH, Ding LL, Ren HQ. Discussion on measurement of chlorophyll-a in phytoplankton with ethanol [J]. Environ Monit China, 2008, 24 (6): 9-10]
16. 宋培钦, 刘鹭, 魏东.户外环境条件下三角褐指藻生长和积累脂肪酸的条件优化[J]. 现代食品科技, 2018, 34 (1): 168-175 [Song PX, Liu L, Wei D. Culture condition optimization for the growth of Phaeodactylum tricornutum and accumulation of fatty acid of under outdoor environment [J]. Mod Food Sci Technol, 2018, 34 (1): 168-175]
17. 何学佳, 彭兴跃. 应用流式细胞仪研究Pb对海洋微藻生长的影响[J]. 海洋环境科学, 2003, 22 (1): 1-5 [He XJ, Pen XY. The influence of lead on marine microalgae by a flow cytometry [J]. Mar Environ Sci, 2003, 22 (1): 1-5]
18. 国家环保局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境学出版社, 2002 [State Environmental Protection Administration. Water and Wastewater Monitoring and Snalysis Method [M]. 4th ed. Beijing: China Environmental Science Press, 2002]
19. Wang T, Tian X, Liu T, Wang Z, Guan W. Enhancement of lipid productivity with a novel two-stage heterotrophic fed-batch culture of Chlorella protothecoides and a trial of CO2 recycling by coupling with autotrophic process [J]. Biomass Bioenergy, 2016, 95: 235-243
20. Mu?oz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review [J]. Water Res, 2006, 40 (15): 2799-2815
21. 李福东, 张诚. 细菌在浮游植物生长过程中的作用[J]. 海洋科学, 1996, 20 (6): 30-33 [Li FD, Zhang C. Role of bacteria in the growth process of phytoplankton [J]. Mar Sci, 1996, 20 (6): 30-33]
22. 王斐, 郑天凌, 洪华生. 细菌胞外酶的生态作用[J]. 海洋科学, 1999, 23 (3): 33-36 [Wang F, Zheng TL, Hong HS. Ecological function of bacterial extracellular enzyme [J]. Mar Sci, 1999, 23 (3): 33-36]
23. Perezm MT, Sommaruga R. Differential effect of algaland soil derived dissolved organic matter on alpine lake bacterial community composition and activity [J]. Limnol Oceanogr, 2006, 51 (6): 2527-2537
24. Ji X, Jiang M, Zhang J, Jiang X, Zheng Z. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater [J]. Bioresour Technol, 2017, 247: 44
25. 国家环境保护总局. 城镇污水处理厂污染物排放标准: GB 18918-2002 [S]. 北京: 中国环境科学出版社, 2015 [State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method [S]. 4th ed. Beijing: China Environmental Science Press, 2002]
26. Castro-Cese?a AB, Sánchez-Saavedra MDP. Effect of glycerol and PEGMA coating on the efficiency of cell holding in alginate immobilized Synechococcus elongatus [J]. J Appl Phycol, 2016, 28 (1): 63-71
27. Vílchez C, Garbayo I, Lobato MV, Vega J. Microalgae-mediated chemicals production and wastes removal [J]. Enzyme Microb Technol, 1997, 20 (8): 562-572
28. 林永波, 谢新宇, 蔡休久. 聚乙烯醇-海藻酸钠凝胶珠去除废水中的无机磷的研究. 环境科学与技术, 2009, 32 (10): 25-29 [Lin YB, Xie XY, Cai TJ. Removal of phosphorus in wastewater by polyvinylalcohol-sodium alginate gel beads [J]. Environ Sci Technol, 2009, 32 (10): 25-29]
29. 王佳. 固定化藻菌的小球浓度对模拟生活污水脱氮除磷效果的影响[J]. 水资源保护, 2005, 21 (1): 72-74 [Wang J. Effect of cell concentration on the removal of nitrogen and phosphorus in synthetic wastewater by the immobilized algal-bacterial system [J]. Water Res Prot, 2005, 21 (1): 72-74]
30. Lü JH, Yuan LJ, Chen X, Liu L, Luo DC. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping [J]. Chemosphere, 2014, 117 (1): 715-721
31. Wang L, Liu J, Zhao Q, Wei W, Sun Y. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems [J]. Bioresour Technol, 2016, 211: 1-5
32. De Godos I, Blanco S, Garcia-Encina P, Becares E , Mu?oz R. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates [J]. Bioresour Technol, 2009, 100 (19): 4332-4339
33. Mujtaba G, Lee K. Treatment of real wastewater using co-culture of immobilized, Chlorella vulgaris, and suspended activated sludge [J]. Water Res, 2017, 120: 174-184
34. Zeng XH, Guo XY, Su GM, Danquah MK, Zhang SD, Lu YH, Sun LY, Lin L. Bioprocess considerations for microalgal-based wastewater treatment and biomass production [J]. Renew Sustain Energy Rev, 2015, 42: 1385-1392
35. 李海涛, 吴沿友, 谢腾祥. 微藻利用不同无机碳途径的定量方法[J]. 地球与环境, 2014, 42 (1): 116-121 [Lin HT, Wu YY, Xie TX. The method of quantifying inorganic carbon pathways in microalgae [J]. Earth Environ, 2014, 42 (1): 116-121]
36. Li Y, Xu H, Han FX, Mu JX, Chen D, Feng B, Zeng HY. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime [J]. Bioresour Technol, 2015, 192: 781-791
37. 邢丽贞. 固定化藻类去除污水中氮磷及其机理的研究[D]. 西安: 西安建筑科技大学, 2005 [Xin LZ. Investigations on methods and mechanism for removal of nitrogen & phosphorus in wastewater by immobilized algae [D]. Xi’an: Xi’an University of Architecture and Technology, 2005]
38. Léon R, Galván F. Glycerol photoproduction by free and Ca-alginate entrapped cells of Chlamydomonas reinhardtii [J]. J Biotechnol, 1995, 42 (1): 61-67
39.

相似文献/References:

[1]董新姣**,俞林伟.固定化枝孢霉吸附Cu2+的研究[J].应用与环境生物学报,2005,11(04):493.
 DONG Xinjiao,et al..Biosorption of Cu2+ by immobilized Cladosporium sp.[J].Chinese Journal of Applied & Environmental Biology,2005,11(04):493.

更新日期/Last Update: 2019-08-25