|本期目录/Table of Contents|

[1]陈倩妹,王泽西,刘洋,等.川西亚高山针叶林土壤酶及其化学计量比对模拟氮沉降的响应[J].应用与环境生物学报,2019,25(04):791-800.[doi:10.19675/j.cnki.1006-687x.2018.11039]
 CHEN Qianmei,WANG Zexi,LIU Yang**,et al.Response of soil enzyme activity and stoichiometric ratio to simulated nitrogen deposition in subalpine coniferous forests of western Sichuan[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):791-800.[doi:10.19675/j.cnki.1006-687x.2018.11039]
点击复制

川西亚高山针叶林土壤酶及其化学计量比对模拟氮沉降的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
791-800
栏目:
生态系统养分循环与保护恢复专栏
出版日期:
2019-08-25

文章信息/Info

Title:
Response of soil enzyme activity and stoichiometric ratio to simulated nitrogen deposition in subalpine coniferous forests of western Sichuan
作者:
陈倩妹;?王泽西;?刘洋;?郑海峰;?李洪杰;?王利峰;?陈亚梅;?谌贤;?唐实玉
四川农业大学林学院生态林业研究所, 高山森林生态系统定位研究站,长江上游森林资源保育与生态安全国家林业局重点实验室 成都 611130
Author(s):
CHEN Qianmei;? WANG Zexi;? LIU Yang**;? ZHENG Haifeng;? LI Hongjie;? WANG Lifeng;? CHEN Yamei;? CHEN Xian & TANG Shiyu
Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forest, Sichuan Agricultural University, Chengdu 611130, China
关键词:
模拟氮沉降;?亚高山针叶林;?土壤酶活性;?化学计量比;?碳氮磷限制
Keywords:
simulated nitrogen deposition;? subalpine coniferous forest;? soil enzyme activity;? stoichiometric ratio;? carbon;? nitrogen;? and phosphorus restriction
分类号:
S714.2
DOI:
10.19675/j.cnki.1006-687x.2018.11039
摘要:
大气氮沉降的明显增加将有可能显着影响我国西部地区受氮限制的亚高山森林生态系统的物质循环. 为了解模拟氮沉降会不会改变土壤酶活性及其化学计量比并缓解该区域土壤微生物生长代谢对氮的限制,选择川西亚高山60年生的四川红杉(Larix mastersiana)人工林为研究对象,通过4个水平梯度的土壤模拟氮沉降控制试验(CK:0 g m-2 a-1;N1:2 g m-2 a-1;N2:5 g m-2 a-1;N3:10 g m-2 a-1),检测7种土壤酶活性及其化学计量比. 结果表明:N-乙酰葡萄糖苷酶、过氧化物酶、C:NEEA、N:PEEA对一个生长季模拟氮沉降有显着响应,特别在模拟氮沉降后期表现为中氮显着促进N-乙酰葡萄糖苷酶活性(56.40%-204.78%)、过氧化物酶活性(42.28%-54.87%);酸性磷酸酶、β-葡萄糖苷酶、纤维二糖酶、亮氨酸酶、多酚氧化酶、土壤酶化学计量碳磷比(C:PEEA)对一个生长季施氮无显着响应,但都具有极显着月动态. 相关分析和逐步回归分析表明,土壤温度和含水率是土壤酶活性及其化学计量比的决定性因子. 综上所述,研究区域亚高山森林土壤微生物的碳氮磷代谢对模拟氮沉降响应显着,微生物代谢呈现出一定的氮限制,模拟氮沉降中氮水平后期微生物代谢呈现出由氮限制向磷限制转化的趋势. (图5 表3 参47)
Abstract:
The increasing atmospheric nitrogen deposition maybe significantly affect the material circulation of subalpine forest ecosystems, where alpine soils are generally restricted by nitrogen in western China. The aim of the presents study was to examine whether simulated nitrogen deposition would change the soil enzyme activity and its stoichiometry and alleviate the nitrogen limitation of soil microbial metabolism in this region. Four gradient experiments of simulated nitrogen deposition (CK: 0 g m-2 a-1; N1: 2 g m-2 a-1; N2: 5 g m-2 a-1; N3: 10 g m-2 a-1) were conducted in the 60-year-old Larix mastersiana plantation of the subalpine forest in western Sichuan, to analyze the activity of seven soil enzymes and the stoichiometric ratio. The results indicated that N-acetylglucosidase, peroxidase, C:NEEA, and N:PEEA had a significant response to simulated nitrogen deposition in the growing season, and medium simulated nitrogen deposition elicited a significant promotion of N-acetylglucosidase 56.40%-204.78% and peroxidase 42.28%-54.87%, especially in the later growing season. Acid phosphatase, β-glucosidase, cellobiase, leucine, polyphenol oxidase, and C:PEEA did not exhibit a significant response to simulated nitrogen deposition in the growing season, but all enzymes had significantly monthly variations. Correlation analysis and stepwise regression analysis revealed that soil temperature and moisture content were the decisive factors for soil enzyme activity and stoichiometric ratios. The carbon, nitrogen, and phosphorus metabolism of soil microorganisms responded significantly to simulated nitrogen deposition, and microbial metabolism showed a certain degree of nitrogen restriction in subalpine coniferous forests. The microbial metabolism showed a trend of conversion from nitrogen restriction to phosphorus restriction at the later stage of medium simulated nitrogen deposition.

参考文献/References:

1 Bergstr?m AK, Jansson M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere [J]. Glob Change Biol, 2010, 12 (4): 635-643
2 Fang Y, Yoh M, Koba K, Zhu W, Takebayashi Y, Xiao Y, Lei C, Mo J, Zhang W, Lu X. Nitrogen deposition and forest nitrogen cycling along an urban–rural transect in southern China [J]. Glob Change Biol, 2011, 17 (2): 872-885
3 Zhou X, Zhang Y, Downing A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China [J]. Soil Biol Biochem, 2012, 47: 67-77
4 Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494 (7438): 459-462
5 Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, Zuo Y, Zhang DY, Wang QF. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity [J]. Sci Rep-UK, 2014, 4: 3763
6 Zhu JX, He NP, Wang QF, Yuan GF, Wen D, Yu GR, Jia YL. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems [J]. Sci Total Environ, 2015, 511: 777-785
7 王晶苑, 张心昱, 温学发, 王绍强, 王辉民. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33 (5): 1337-1346 [Wang JY, Zhang XY, Wen XF, Wang SQ, Wang HM. The effect of nitrogen deposition on forest soil organic matter and litter decompostion and the microbial mechanism [J]. Acta Ecol Sin, 2013, 33 (5): 1337-1346]
8 杨开军, 杨万勤, 庄丽燕, 李志杰, 贺若阳, 谭波, 张丽, 肖玖金, 徐振锋. 四川盆地西缘都江堰大气氮素湿沉降特征[J]. 应用与环境生物学报, 2018, 24 (1): 107-111 [ Yang KJ, Yang WQ, Zhuang LY, Li ZJ, He RY, Tan B, Zhang L, Xiao JJ, Xu ZF. Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin [J]. Chin J Appl Environ Biol, 2018, 24 (1): 170-111]
9 Burns RG, Deforest J, Marxsen J, Sinsabaugh R, Stromberger ME, Wallenstein M, Weintraub MN, Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions [J]. Soil Biol Biochem, 2013, 58: 216-234
10 佘汉基, 薛立. 森林土壤酶活性对氮沉降的响应[J]. 世界林业研究, 2018, 31 (1): 7-12 [She HJ, Xue L. Responses of forest soil enzymes to nitrogen deposition [J]. World For Res, 2018, 31 (1): 7-12]
11 Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum, forest soil [J]. Soil Biol Biochem, 2002, 34 (9): 1309-1315
12 Deforest JL, Zak DR, Pregitzer KS, Burton AJ. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest [J]. Soil Biol Biochem, 2004, 36 (6): 965-971
13 Keeler BL, Hobbie SE, Kellogg LE. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition [J]. Ecosystems, 2009, 12 (1): 1-15
14 周嘉聪, 刘小飞, 郑永, 纪宇皝, 李先锋, 徐鹏程, 陈岳民, 杨玉盛. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37 (1): 127-135 [Zhou JC, Liu XF, Zheng Y, Ji YH, Li XF, Xu PC, Chen YM, Yang YS. Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions [J]. Acta Ecol Sin, 2017: 37 (1): 127-135]
15 Chen J, Luo Y, Li J, Zhou X, Cao J, Wang RW, Wang Y, Shelton S, Jin Z, Walker LM, Feng Z, Niu S, Feng W, Jian S, Zhou L. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition [J]. Glob Change Biol, 2017, 23: 1328-1337
16 Jian SY, Li JW, Chen J, Wang GS, Mayes MA, Dzantor KE, Hui DF, Luo YQ. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biol Biochem, 2016, 101: 32-43
17 刘星, 汪金松, 赵秀海. 模拟氮沉降对太岳山油松林土壤酶活性的影响[J]. 生态学报, 2015, 35 (14): 4613-4624 [Liu X, Wang JS, Zhao XH. Effects of simulated nitrogen deposition on the soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain [J]. Acta Ecol Sin, 2015, 35 (14): 4613-4624]
18 Sinsabaugh RL, Gallo ME, Lauber C. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition [J]. Biogeochemistry, 2005, 75: 201-215
19 张闯, 邹洪涛, 张心昱, 寇亮, 杨洋, 孙晓敏, 李胜功, 王辉民. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响[J]. 应用生态学报, 2016, 27 (11): 3427-3434 [Zhang C, Zou HT, Zhang XY, Kou L, Yang Y, Sun XM, Li SG, Wang HM. Effects of nitrogen additions on soil hydrolase and oxidase activities in Pinus elliottii plantations [J]. Chin J Appl Ecol, 2016, 27 (11): 3427-3434]
20 Sinsabaugh RL, Hill BH, Shah JJF. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2010, 462 (7274):795
21 Moorhead DL, Sinsabaugh RL. A theoretical model of litter decay and microbial interaction [J]. Ecol Monogr, 2006, 76 (2): 151-174
22 Hill BH, Elonen CM, Jicha TM, Bolgrien DW, Moffett MF. Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin [J]. Biogeochemistry, 2010, 97 (2-3): 195-209
23 王冰冰, 曲来叶, 马克明, 张心昱, 宋成军. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征[J]. 生态学报, 2015, 35 (18): 6078-6088 [Wang BB, Qu LY, Ma KM, Zhang XY, Song CJ. Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid Upper Minjiang River Valley [J]. Acta Ecol Sin, 2015, 35 (18): 6078-6088]
24 张星星, 杨柳明, 陈忠, 李一清, 林燕语, 郑宪志, 楚海燕, 杨玉盛. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018, 38 (16): 5828-5836 [Zhang XX, Yang LM, Chen Z, Li YQ, Lin YY, Zheng XZ, Chu HY, Yang YS. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas [J]. Acta Ecol Sin, 2018, 38 (16): 5828-5836]
25 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华, 向元彬, 黄立华. 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应[J]. 应用生态学报, 2009, 33 (12): 728-738 [Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH, Xiang YB, Huang LH. Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under Simulated nitrogen deposition [J]. Chin J Appl Ecol, 2009, 33 (12): 728-738]
26 汤国庆, 吴福忠, 杨万勤, 王壮, 汪沁, 梁子逸, 常晨晖, 李俊. 高山森林林窗和生长基质对苔藓植物氮和磷含量的影响[J]. 应用生态学报, 2018, 29 (4): 1133-1139 [Tang GQ, Wu FZ, Yang WQ, Wang Z, Wang Q, Liang ZY, Chang CH, Li J. Effects of gap and growth substrate on nitrogen and phosphorus contents of bryophytes in an alpine forest [J]. Chin J Appl Ecol, 2018, 29 (4): 1133-1139]
27 Sinsabaugh RL, Reynolds H, Long TM. Rapid assay for amidohydrolase ( (urease) activity in environmental samples [J]. Soil Biol Biochem, 2001, 32 (14): 2095-2097
28 Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types [J]. Biogeochemistry, 2014, 120 (1-3): 203-224
29 Enrique AG, Bruno EC, Christopher A, Virgile C, Steven C. Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.) [J]. Soil Biol Biochem, 2008, 40 (7): 1654-1661
30 李银, 曾曙才, 黄文娟. 模拟氮沉降对鼎湖山森林土壤酸性磷酸单酯酶活性和有效磷含量的影响[J]. 应用生态学报, 2011, 22 (3): 631-636 [Li Y, Zeng SC, Huang WJ. Effects of simulated nitrogen deposition on soil acid phosphomonoesterase activity and soil available phosphorus content in subtropical forests in Dinghushan Mountain [J]. Chin J Appl Ecol, 2011, 22 (3): 631-636]
31 周晓兵, 张元明, 陶冶, 张丙昌. 古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应[J]. 生态学报, 2011, 31 (12): 3340-3349 [Zhou XB, Zhang YM, Tao Y, Zhang BC. Responses of soil enzyme activities and microbial biomass N to simulated N deposition in Gurbantunggut Desert [J]. Acta Ecol Sin, 2011, 31 (12): 3340-3349]
32 Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology, 2000, 81 (9): 2359-2365
33 赵玉涛, 李雪峰, 韩士杰, 胡艳玲. 不同氮沉降水平下两种林型的主要土壤酶活性[J]. 应用生态学报, 2008, 19 (12): 2769-2773. [Zhao YT, Li XF, Han SJ, Hu YL. Soil enzyme activities under two forest types as affected by different levels of nitrogen deposition [J]. Chin J Appl Ecol, 2008, 19 (12): 2769-2773]
34 Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity [J]. Ecol Appl, 2004, 14 (4): 1172-1177
35 Keuskamp JA, Feller IC, Laanbroek HJ, Verhoeven JTA, Hefting MM. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat [J]. Soil Biol Biochem, 2015, 81: 38-47
36 王晖, 莫江明, 薛璟花, 方运霆, 李炯. 氮沉降增加对森林凋落物分解酶活性的影响[J]. 热带亚热带植物学报, 2006, 14 (6): 539-546 [Wang H, Mo JM, Xue JH, Fang YT, Li J. Effects of elevated nitrogen deposition on the activities of enzymes in forest litter decomposition: a review [J]. J Trop Subtrop Bot, 2006, 14 (6): 539-546]
37 杜锟, 张江勇, 林勇明, 张广帅, 吴承祯, 洪伟, 李键, 范海兰. 邓恩桉(Eucalyptus dunnii)人工幼龄林土壤酶活性对模拟硫、氮复合沉降的响应[J]. 热带作物学报, 2015, 36 (3): 504-509 [Du K, Zhang JY, Lin YM, Zhang GS, Wu CZ, Hong W, Li J, Fan HL. Responses of soil enzymes activities to simulated sulfur and nitrogen complex depositions in a young Eucalyptus dunnii plantation [J]. Chin J Trop Crops, 2015, 36 (3): 504-509]
38 张艺, 王春梅, 许可, 杨欣桐. 模拟氮沉降对温带森林土壤酶活性的影响[J]. 生态学报, 2017, 37 (6): 1956-1965 [Zhang Y, Wang CM, Xu K, Yang XT. Effect of simulated nitrogen deposition on soil enzyme activities in a temperate forest [J]. Acta Ecol Sin, 2017, 37 (6): 1956-1965]
39 Fog K. The effect of added nitrogen on the rate of decomposition of organic matter [J]. Biol Rev, 2010, 63 (3): 433-462
40 沈芳芳, 袁颖红, 樊后保, 刘文飞, 刘苑秋. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J]. 生态学报, 2012, 32 (2): 517-527 [Shen FF, Yuan YH, Fan HB, Liu WF, Liu YQ. Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation [J]. Acta Ecol Sin, 2012, 32 (2): 517-527]
41 Lü YN, Wang CY, Wang FY, Zhao GY, Pu GZ, Ma X, Tian XJ. Effects of nitrogen addition on litter decomposition, soil microbial biomass, and enzyme activities between leguminous and non-leguminous forests [J]. Ecol Res, 2013, 28: 793-800
42 樊后保, 刘文飞, 徐雷, 许鲁平, 孟庆银. 杉木人工林土壤酶活性对氮沉降的响应[J]. 林业科学, 2012, 48 (7): 8-13 [Fan HB, Liu WF, Xu L, Xu LP, Meng QY. Impacts of nitrogen deposition on soil enzyme activities in a Chinese fir plantation [J]. Sci Silv Sin, 2012, 48 (7): 8-13]
43 李瑞瑞, 卢艺, 王益明, 万福绪. 氮添加对墨西哥柏人工林土壤碳氮磷化学计量特征及酶活性的影响[J]. 生态学杂志, 2019. [2019-01-10]. https://doi.org/10.13292/j.1000-4890.201902.028 [Li RR, Lu Y, Wang YM, Wan FX. Effects of N supply on C, N and P stoichiometry and soil enzyme activities in Cupressus lusitanica Mill. plantation [J]. Chin J Ecol, 2019. [2019-01-10]. https://doi.org/10.13292/j.1000-4890.201902.028]
44 岳楷, 杨万勤, 彭艳, 黄春萍, 张川, 吴福忠. 高寒森林溪流对凋落叶分解过程中木质素降解的影响[J]. 植物生态学报, 2016, 40 (9): 893-901 [Yue K, Yang WQ, Pen Y, Huang CP, Zhang C, Wu FZ. Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest [J]. Chin J Plant Ecol, 2016, 40 (9): 893-901]
45 Treseder KK. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies [J]. Ecol Lett, 2008, 11 (10): 1111-1120
46 Ma Y, Zhu B, Sun Z, Zhao C, Yang Y, Piao S. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch [J]. J Plant Ecol-UK, 2014, 7 (3): 240-249
47 Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition [J]. Soil Biol Biochem, 1994, 26 (10): 1305-1311

相似文献/References:

[1]黄玉梅,杨万勤,张健,等.汶川大地震后川西亚高山针叶林土壤动物群落变迁[J].应用与环境生物学报,2014,20(04):723.[doi:10.3724/SP.J.1145.2013.12043]
 HUANG Yumei,YANG Wanqin,ZHANG Jian,et al.Changes of soil fauna community in the subalpine coniferous plantation in western Sichuan after the Wenchuan Earthquake[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):723.[doi:10.3724/SP.J.1145.2013.12043]

更新日期/Last Update: 2019-08-25