|本期目录/Table of Contents|

[1]张姣惠,张颖,林心宇,等.姜黄素调控p53蛋白入核诱导骨髓瘤细胞凋亡[J].应用与环境生物学报,2019,25(04):892-896.[doi:10.19675/j.cnki.1006-687x.2018.11046]
 ZHANG Jiaohui,ZHANG Ying,LIN Xinyu & HUANG Xiaohong**.Curcumin regulates P53 protein entry into nucleus and induces apoptosis of P3X63Ag8[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):892-896.[doi:10.19675/j.cnki.1006-687x.2018.11046]
点击复制

姜黄素调控p53蛋白入核诱导骨髓瘤细胞凋亡
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
892-896
栏目:
研究论文
出版日期:
2019-08-25

文章信息/Info

Title:
Curcumin regulates P53 protein entry into nucleus and induces apoptosis of P3X63Ag8
作者:
张姣惠;?张颖;?林心宇;?黄小红
福建农林大学动物科学学院 福州 350002
Author(s):
ZHANG Jiaohui;? ZHANG Ying;? LIN Xinyu & HUANG Xiaohong**
College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
姜黄素;?骨髓瘤细胞;?p53蛋白;?细胞凋亡
Keywords:
curcumin;? P3X63Ag8 cell;? p53 protein;? cell apoptosis
分类号:
R965 : Q949.718.3
DOI:
10.19675/j.cnki.1006-687x.2018.11046
摘要:
为探讨姜黄素对小鼠骨髓瘤细胞核内p53蛋白含量的影响及其凋亡作用,体外培养P3X63Ag8细胞,给予不同浓度姜黄素处理(0、10、20、30、40、50 ?mol/L)24 h,通过还原性辅酶Ⅰ氧化法测定乳酸脱氢酶(LDH)活性、Caspase 3荧光分析试剂盒检测Caspase 3活性的变化,采用2’,7’-二氯荧光黄双乙酸盐(DCFH-DA)法检测细胞活性氧(ROS)量的变化,利用Western-Blot技术检测细胞质与细胞核中p53蛋白的分布情况. 结果显示,姜黄素浓度为20 ?mol/L时,P3X63Ag8细胞LDH活性极显着升高(P < 0.01),并在40 ?mol/L组达到顶峰. 30 ?mol/L姜黄素处理后,Caspase-3活性极显着提高(P < 0.01),其余姜黄素处理组与未处理组相比未呈现显着变化. 与阴性对照组相比,当姜黄素浓度为30 ?mol/L时细胞内活性氧水平显着上升(P < 0.01),而随着姜黄素浓度提高到40和50 ?mol/L,细胞内活性氧水平均开始极显着下降(P < 0.01),且高浓度组下降程度高于中浓度组. 从细胞质和细胞核蛋白分离的试验结果可以看出,在细胞质蛋白中,p53蛋白含量随着姜黄素浓度的增加而降低,与此相反,细胞核蛋白中p53蛋白含量则呈现了上升趋势. 因此,姜黄素通过调控LDH活性、Caspase-3活性以及活性氧水平来促进细胞损伤,从而抑制骨髓瘤细胞P3X63Ag8的增殖,促进其凋亡;在蛋白水平上促进p53蛋白入核,从而进一步刺激细胞凋亡程序的启动. (图4 参25)
Abstract:
The aim of this study was to investigate the effect of curcumin on the protein level of p53 in the nucleus of mouse myeloma cells and curcumin’s ability to induce apoptosis. P3X63Ag8 cells were cultured with different concentrations of curcumin (0, 10, 20, 30, 40, 50 ?mol/L) for 24 h. Lactate dehydrogenase (LDH) activity was determined by reducing the coenzyme I oxidation method. Caspase-3 was detected by Caspase-3 fluorescence assay kit. 2’,7’-dichlorofluorescein diacetate (DCFH-DA) method was used to detect changes in cellular reactive oxygen species (ROS). To detect the protein level of P53 in the cytoplasm and nucleus, the cytoplasmic proteins and nuclear protein were separated by western blotting. When the concentration of curcumin was 20 μmol/L, the activity of LDH in P3X63Ag8 cells was significantly increased (P < 0.01) and reached a peak under 40 μmol/L. The activity of Caspase-3 was significantly increased (P < 0.01) in the 30 μmol/L curcumin treatment. The other curcumin treatment groups showed no significant difference compared with the control group. Compared with the negative control group, the level of ROS was significantly increased when the concentration of curcumin was 30 μmol/L (P < 0.01). However, the level of ROS showed a significant decrease (P < 0.01) when the concentration of curcumin was 40 and 50 μmol/L. Western blot results showed that the cytoplasmic protein and the protein level of p53 decreased with the increasing concentration of curcumin. In contrast, the protein level of nuclear p53 had an upward trend. In summary, curcumin can regulate the activity of LDH, Caspase-3, and ROS to promote cell damage, thereby inhibiting the proliferation of myeloma cells P3X63Ag8 and leading to its apoptosis. In addition, it promotes p53 protein entry into the nucleus and regulates apoptosis-related proteins at the protein level.

参考文献/References:

1 Meng B, Li J, Cao H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications [J]. Curr Pharm Des, 2013, 19 (11): 2101-2113
2 Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells [J]. Indian J Clin Biochem, 2015, 30 (1): 109-112
3 Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent [J]. J Trad Complem Med, 2017, 7 (3): 339-346
4 Lüer S, Troller R, Aebi C. Antibacterial and antiinflammatory kinetics of curcumin as a potential antimucositis agent in cancer patients [J]. Nutr Cancer, 2012, 64 (7): 975-981
5 Liu C, Huang H. Antimicrobial activity of curcumin-loaded myristic acid microemulsions against staphylococcus epidermidis [J]. Chem Pharm Bull, 2012, 60 (9): 1118-1124
6 Mathew D, Hsu WL. Antiviral potential of curcumin [J]. J Funct Foods, 2018, 40 (1): 692-699
7 Trujillo J, Chirino Y, Molina-Jijón E, Andérica-Romero A, Tapia E, Pedraza-Chaverrí J. Renoprotective effect of the antioxidant curcumin: recent findings [J]. Redox Biol, 2013, 1(1): 448-456
8 Rivera-Mancía S, Trujillo J, Chaverri JP. Utility of curcumin for the treatment of diabetes mellitus: evidence from preclinical and clinical studies [J]. J Nutr Intermed Metab, 2018, 14(1): 29-41
9 Tang ZB, Zhao L, Yang ZX, Liu ZH, Gu J, Bai B, Liu JL, Xu JY, Yang HL. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect [J]. Intern J Nanomed, 2018, 13 (1): 2907-2919
10 Banik U, Subramani P, Arun KA, Nor HO. Curcumin: The spicy modulator of breast carcinogenesis [J]. J Exp Clin Cancer Res, 2017, 36 (1): 98-114
11 Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A. Curcumin: a new candidate for melanoma therapy? [J]. Int J Cancer, 2016, 139 (8): 1683-1695
12 Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, Kong B. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo [J]. Int J Clin Exp Pathol, 2014, 7 (6): 2818-2824
13 Gururaj AE, Belakavadi M, Venkatesh DA, Marme D, Salimath BP. Molecular mechanisms of anti-angiogenic effect of curcumin [J]. Biochem Biophys Res Commun, 2002, 297 (4): 934-942
14 Zhang Y, Lin XY, Zhang JH, Xie ZL, Deng H, Huang YF, Huang XH. Apoptosis of mouse myeloma cells induced by curcumin via the Notch3 p53 signaling axis [J]. Oncol Lett, https://www.spandidos-publications.com/confirmCorrespondingEmail?transactionId=3078312e36363831363861633538363635703430 (doi.org/10.3892/ol.2018.9591
15 Kocaadam B, Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health [J]. Crit Rev Food Sci Nutr, 2017, 57 (13): 2889-2895
16 Wei XC, Zhou DY, Wang HQ, Ding N, Cui XX, Wang H, Verano M, Zhang K, Conney AH, Zheng X, Du ZY. Effects of pyridine analogs of curcumin on growth, apoptosis and NF-κB activity in prostate cancer PC-3 cells [J]. Anticancer Res, 2013, 33(4): 1343-1350
17 Sun X, Deng QF, Liang ZF, Zhang ZQ, Zhao L, Geng H, Xie DD, Wang Y, Yu DX, Zhong CY. Curcumin reverses benzidine-induced cell proliferation by suppressing ERK1/2 pathway in human bladder cancer T24 cells [J]. Exp Toxicol Pathol, 2016, 68 (4): 215-222
18 Fiume L, Manerba M, Vettraino M, Di SG. Inhibition of lactate dehydrogenase activity as an approach to cancer therapy [J]. Future Med Chem, 2014, 6 (4): 429-445
19 Stefano GD, Manerba M, Ianni LD, Fiume L. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment [J]. Future Med Chem, 2016, 8 (6): 713-725
20 Magdalena LC, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis [J]. Free Rad Biol Med, 2010, 48 (6): 749-762
21 Ge J, Wang C, Nie X, Yang J, Lu H, Song X, Su K, Li T, Han J, Zhang Y, Mao J, Gu Y, Zhao J, Jiang S WQ. ROS-mediated apoptosis of HAPI microglia through p53 signaling following pfos exposure [J]. EnvironToxicol Pharmacol, 2016, 46 (1): 9-16
22 Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy [J]. Redox Biol, 2015, 4(5): 184-192
23 Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohama S, Nomura Y, Gebicke-Haerter PJ, Taniguchi T. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells [J]. Glia, 2015, 25 (2): 154-164
24 Panieri E, Santoro MM. ROS homeostasis and metabolism: A dangerous liason in cancer cells [J]. Cell Death Amp Disease, 2016, 7 (6): 1-12
25 Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression [J]. Curr Opin Cell Biol, 2017, 51 (1): 65-72

更新日期/Last Update: 2019-08-25