|本期目录/Table of Contents|

[1]倪宏宇航,弓雨欣,李祥锴.微生物燃料电池阳极电极的新型材料与修饰方法[J].应用与环境生物学报,2019,25(04):999-1013.[doi:10.19675/j.cnki.1006-687x.2018.12022]
 NI Hongyuhang,GONG Yuxin & LI Xiangkai**.Application of recent modification methods and materials in microbial fuel cell anode electrodes[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):999-1013.[doi:10.19675/j.cnki.1006-687x.2018.12022]
点击复制

微生物燃料电池阳极电极的新型材料与修饰方法
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
999-1013
栏目:
综述
出版日期:
2019-08-25

文章信息/Info

Title:
Application of recent modification methods and materials in microbial fuel cell anode electrodes
作者:
倪宏宇航;?弓雨欣;?李祥锴
兰州大学生命科学学院细胞活动与逆境适应教育部重点实验室 兰州 730000
Author(s):
NI Hongyuhang;? GONG Yuxin & LI Xiangkai**
Ministrly of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
关键词:
微生物燃料电池;?功率密度;?生物质;?石墨烯;?导电性;?电阻
Keywords:
Microbial fuel cell;? Power density;? biomass;? graphene;? electrical conductivity;? resistance
分类号:
TM911.45
DOI:
10.19675/j.cnki.1006-687x.2018.12022
摘要:
近年来,微生物燃料电池(Microbial fuel cells,MFCs)发展迅速,然而其功率输出仍然较低,其主要限制因素为接种物的活性及电极材料的选择. 阳极电极常被作为有效的微生物载体,并介导电子的快速传递;因此使用新型的电极材料或修饰方法将成为提高MFC效率的重要手段. 根据材料的物理特性及改性方法,将阳极电极材料划分为5类:修饰后的传统碳电极材料、石墨烯修饰电极材料、天然生物质电极材料、碳纳米管修饰电极材料以及金属修饰电极材料,并着重介绍了其中的热点——石墨烯修饰电极材料与碳纳米管修饰电极材料. 通过分析,归纳出部分能够促进微生物燃料电池电化学表现的优异性能,例如强导电性、生物相容性、高比表面积及耐腐蚀性等;同时,修饰过后的纳米材料、石墨烯材料及三维大孔材料将成为日后的研究重点. 未来,研究者们在选择电极材料的时候,应当同时考虑性能的差异性和成本的可控性. 人们只有将新材料及改性方法投入到实际的大规模应用中,才能合理有效地实现废水处理及生产清洁能源的目的. (图6 表5 参117)
Abstract:
Although microbial fuel cells (MFCs) have evolved extensively in recent years, their ability to generate power remains limited due to low active inoculums and the poor selection of electrode materials. Anode electrodes are generally used as effective microbial carriers and can facilitate the rapid transfer of conductive ions. Therefore, the use of new electrode materials or modification of methods are necessary to improve the efficiency of MFCs. Anode electrodes are divided into five categories depending on physical characteristics and the methods used to modify the material: the modified traditional carbon electrode material, graphene-modified electrode material, natural biomass electrode material, carbon nanotube-modified electrode material, and metal-modified electrode material; of these, the carbon nanotube-modified and graphene-modified electrode materials have been well studied. The objective of this review is to comparatively investigate the application and performance of new materials in the anode of MFC and to relate the advantages and disadvantages of various materials and methods used. We summarize some excellent properties that can improve the performance of anode electrodes, such as strong conductivity, biocompatibility, high specific surface area, corrosion resistance, etc. Modified nanomaterials, graphene materials, and three-dimensional macroporous materials could emerge as focal points for future research. Considering the differences between performance and material cost, electrode constituents could be more effective in the future. Actual large-scale applications of new materials and modification methods would also be helpful to realize the proficiency of wastewater treatment and the production of clean energy reasonably and effectively.

参考文献/References:

1 Musa SD, Tang ZH, Ibrahim AO, Habib M. China’s energy status: A critical look at fossils and renewable options [J]. Renew Sust Energ Rev, 2018, 81: 2281-2290
2 Feng TT, Yang YS, Xie SY, Dong J, Ding L. Economic drivers of greenhouse gas emissions in China [J]. Renew Sust Energ Rev, 2017, 78: 996-1006
3 Sen S, Ganguly S. Opportunities, barriers and issues with renewable energy development – A discussion [J]. Renew Sust Energ Rev, 2017, 69: 1170-1181
4 郭静, 徐自祥, 付亚星, 刘碧芸, 孟静, 肖可, 付德刚, 孙啸. 产电微生物基因及代谢网络分析[J]. 应用与环境生物学报, 2012, 18 (6): 1075-1084 [Guo J, Xu ZX, Fu YX, Liu BY, Meng J, Xiao K, Fu DG, Sun X. Analysis on electricigen genomes and metabolic networks [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1075-1084]
5 Deng Q, Li X, Zuo J, Ling A, Logan BE. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell [J]. J Power Sources, 2010, 195 (4): 1130-1135
6 Kim J, Kim B, Kim H, Yun Z. Effects of ammonium ions from the anolyte within bio-cathode microbial fuel cells on nitrate reduction and current density [J]. Int Biodeter Biodegr, 2014, 95: 122-126
7 Logan BE, Wallack MJ, Kim KY, He WH, Feng YJ, Saikaly PE. Assessment of microbial fuel cell configurations and power densities [J]. Environ Sci Technol Let, 2015, 2 (8): 206-214
8 张延滔, 张礼霞, 高平, 李大平. 混合菌群生物燃料电池的产电机理与特性 [J]. 应用与环境生物学报, 2012, 18 (3): 465-470 [Zhang YT, Zhang LX, Gao P, Li DP. Mechanism an characteristics of electricity generation in microbial fule cells catalyzed by mixd culture [J]. Chin J Appl Environ Biol, 2012, 18 (3): 465-470]
9 Hong SW, Chang IS, Choi YS, Chung TH. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell [J]. Bioresour Technol, 2009, 100 (12): 3029-3035
10 Wang YY, Hou BH, Lü HY, Wan F, Wang J, Wu XL. Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage [J]. RSC Adv, 2015, 5 (118): 97427-97434
11 Chen Q, Pu W, Hou H, Hu JP, Liu BC, Li JF, Cheng K, Huang L, Yuan XQ, Yang CZ, Yang JK. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells [J]. Bioresour Technol, 2018, 249: 567-573
12 Sun Y, Dai Y, Duan Y, Xu X, Lv Y, Yang L, Zou JL. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells [J]. Carbon, 2017, 119: 394-402
13 Hindatu Y, Annuar MSM, Gumel AM. Mini-review: Anode modification for improved performance of microbial fuel cell [J]. Renew Sust Energ Rev, 2017, 73: 236-248
14 Taskan E, Hasar H, Ozkaya B. Usage of Ti-TiO2 electrode in microbial fuel cell to enhance the electricity generation and its biocompatibility [J]. Appl Mech Mater, 2013, 404: 371-376
15 Zhu X, Logan BE. Copper anode corrosion affects power generation in microbial fuel cells [J]. J Chem Technol Biotechnol, 2014, 89 (3): 471-474
16 Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresour Technol, 2012, 114: 275-280
17 Park IH, Christy M, Kim P, Nahm KS. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell [J]. Biosens Bioelectron, 2014, 58: 75-80
18 Jia X, He Z, Zhang X, Tian XJ. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell [J]. Synthetic Meti, 2016, 215: 170-175
19 Liu J, Liu JF, He WH, Qu YP, Ren NQ, Feng YJ. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode [J]. J Power Sources, 2014, 265: 391-396
20 Yu YY, Guo CX, Yong YC, Li CM, Song H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode [J]. Chemosphere, 2015, 140: 26-33
21 Chang SH, Liou JS, Liu JL, Chiu YF, Xu CH, Chen BY, Chen JZ. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells [J]. J Power Sources, 2016, 336: 99-106
22 Huang LH, Li XF, Ren YP, Wang XH. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell [J]. Int J Hydrogen Energy, 2016, 41 (26): 11369-11379
23 Fan MJ, Zhang W, Sun JY, Chen LL, Li PW, Chen YW, Zhu SM, Shen SB. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells [J]. Int J Hydrogen Energy, 2017, 42 (36): 22786-22795
24 Lü ZS, Xie DH, Li FS, H Y, Wei CH, Feng CH. Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials [J]. J Power Sources, 2014, 246: 642-649
25 Zhang CY, Liang P, Yang XF, Jiang Y, Bian YH, Chen CM, Zhang XY, Huang X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell [J]. Biosens Bioelectron, 2016, 81: 32-38
26 Hidalgo D, Tommasi T, Bocchini S,Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B. Surface modification of commercial carbon felt used as anode for microbial fuel cells [J]. Energy, 2016, 99: 193-201
27 Lanas V, Ahn Y, Logan BE. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode [J]. J Power Sources, 2014, 247: 228-234
28 Liao Q, Zhang J, Li J, Ye DD, Zhu X, Zhang B. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode [J]. Biosens Bioelectron, 2015, 63: 558-561
29 Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures [J]. Bioresour Technol, 2010, 101 (2): 469-475
30 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva LV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films [J]. Science, 2004, 306 (5696): 666-669
31 Yang S, Feng X, Mullen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage [J]. Adv Mater, 2011, 23 (31): 3575-3579
32 Falkovsky LA, Varlamov AA. Space-time dispersion of graphene conductivity [J]. Eur Phys J B, 2007, 56 (4): 281-284.
33 Han D, Yan L, Chen W, Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state [J]. Carbohydr Polym, 2011, 83 (2): 653-658
34 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun, 2008, 146 (9-10): 351-355
35 Liang J, Jiao Y, Jaroniec M, Qiao SZ. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance [J]. Angew Chem Int Ed, 2012, 51 (46): 11496-11500
36 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321 (5887): 385-388
37 Lv W, Li ZJ, Deng YQ, Yang QH. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges [J]. Energy Storage Mater, 2016, 2: 107-138
38 Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CC. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups [J]. ACS Appl Mater Interfaces, 2010, 2 (11): 3092-3099
39 Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light [J]. J Mater Sci, 2010, 46 (8): 2622-2626
40 Zhou XL, Wang M, Lian J, Lian YF. Supercapacitors based on high-surface-area graphene [J]. Sci China Technol Sc, 2014, 57 (2): 278-283
41 Zhang YZ, Mo GQ, Li XW, Zhang WD, Zhang JQ, Ye JS, Huang XD, Yu CZ. A graphene modified anode to improve the performance of microbial fuel cells [J]. J Power Sources, 2011, 196 (13): 5402-5407
42 Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells [J]. Nano Lett, 2011, 11 (1): 291-296
43 Qiao Y, Bao SJ, Li CM. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry [J]. Energ Environ Sci, 2010, 3 (5): 544
44 Wang D, Wang GW, Zhang GQ, Xu XC, Yang FL. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal [J]. Bioresour Technol, 2013, 131: 527-530
45 Zhang KH, Zheng HH, Liang S, Gao CY. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth [J]. Acta Biomater, 2016, 37: 131-142
46 Shan CS, Yang HF, Han DX, Zhang QX, Lvaska A, Niu L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene [J]. Biosens Bioelectron, 2010, 25 (6): 1504-1508
47 Romero-Vargas Castrillón S, Perreault F, De Faria AF, Elimelech M. Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy [J]. Environ Sci Tech Let, 2015, 2 (4): 112-117
48 Xiao L, Damien J, Luo JY, Jang HD, Huang JX, He Z. Crumpled graphene particles for microbial fuel cell electrodes [J]. J Power Sources, 2012, 208: 187-192
49 He ZM, Liu J, Qiao Y, Li CM, Tan TTY. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell [J]. Nano Lett, 2012, 12 (9): 4738-4741
50 Wang HY, Wang GM, Ling YC, Qian F, Song Y, Lu XH, Chen SW, Tong YX, Li Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode [J]. Nanoscale, 2013, 5 (21): 10283-10290
51 Hou J, Liu Z, Zhang P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes [J]. J Power Sources, 2013, 224: 139-144
52 Lv ZS, Chen YF, Wei HC, Li FS, Hu Y, Wei CH, Feng CH. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application [J]. Electrochim Acta, 2013, 111: 366-373
53 Mehdinia A, Ziaei E, Jabbari A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation [J]. Int J Hydrogen Energy, 2014, 39 (20): 10724-10730
54 Qiao Y, Wen GY, Wu XS, Zou L. l-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells [J]. RSC Adv, 2015, 5 (72): 58921-58927
55 Yang XS, Ma XX, Wang K, Wu D, Lei ZC, Feng CH. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode [J]. Electrochim Acta, 2016, 210: 846-853
56 Najafabadi AT, Ng N, Gyenge E. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells [J]. Biosens Bioelectron, 2016, 81: 103-110
57 Call TP, Carey T, Bombelli P, Lee-Smith DJ, Hooper P, Howe CJ, Torrisi F. Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells [J]. J Mater Chem A, 2017, 5 (45): 23872-23886
58 Yu F, Wang C, Ma J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability [J]. Electrochim Acta, 2018, 259: 1059-1067
59 Maiyalagan T, Dong XC, Chen P, Wang X. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application [J]. J Mater Chem, 2012, 22 (12): 5286
60 Han MY, Brant JC, Kim P. Electron transport in disordered graphene nanoribbons [J]. Phys Rev Lett, 2010, 104 (5): 056801
61 Chen HQ, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv Mater, 2008, 20 (18): 3557-3561
62 Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun Xl, Ye SY, Knights S. High oxygen-reduction activity and durability of nitrogen-doped graphene [J]. Energ Environ Sci, 2011, 4 (3): 760
63 Chen SL, He GH, Liu Q, Harnisch F, Zhou Y, Chen Y, Hanif M, Wang SQ, Peng XW, Hou HQ, Schr?der U. Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis [J]. Energ Environ Sci, 2012, 5 (12): 9769
64 Huang L, Regan JM, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells [J]. Bioresour Technol, 2011, 102 (1): 316-323
65 Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J]. Electrochem Commun, 2007, 9 (3): 492-496
66 Chen JF, Hu YY, Zhang L, Huang WT, Sun J. Bacterial community shift and improved performance induced by in situ preparing dual graphene modified bioelectrode in microbial fuel cell [J]. Bioresour Technol, 2017, 238: 273-280
67 Xie X, Yu GH, Liu N, Bao ZN, Criddle CS, Cui Y. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells [J]. Energ Environ Sci, 2012, 5 (5): 6862
68 Sonawane JM, Yadav A, Ghosh PC, Adeloju SB. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells [J]. Biosens Bioelectron, 2017, 90: 558-576
69 Wei JC, Liang P, Zuo KC, Cao XX, Huang X. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial Fuel Cells [J]. ChemSusChem, 2012, 5 (6): 1065-1070
70 Tang XH, Guo K, Li HR, Du ZW, Tian JL. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes [J]. Bioresour Technol, 2011, 102 (3): 3558-3560
71 Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen YS. High-performance supercapacitor electrode materials prepared from various pollens [J]. Small, 2013, 9 (8): 1342-1347
72 Chen SL, He GH, Hu XW, Xie MY, Wang SQ, Zeng DJ, Hou HQ, Schr?der U. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems [J]. ChemSusChem, 2012, 5 (6): 1059-1063
73 Chen SL, Liu Q, He GH, Zhou Y, Hanif M, Peng XW, Wang SQ, Hou HQ. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells [J]. J Mater Chem, 2012, 22 (35): 18609
74 Yuan Y, Zhou SG, Liu Y, Tang JH. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells [J]. Environ Sci Tech, 2013, 47 (24): 14525-14532
75 Zhang J, Li J, Ye DD, Zhu X, Liao Q, Zhang B. Tubular bamboo charcoal for anode in microbial fuel cells [J]. J Power Sources, 2014, 272: 277-282
76 Karthikeyan R, Wang B, Xuan J, Wong JWC, Lee PKH, Leung MKH. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell [J]. Electrochim Acta, 2015, 157: 314-323
77 Chen SS, Tang JH, Jing XY, Liu Y, Yuan Y, Zhou SG. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting [J]. Electrochim Acta, 2016, 212: 883-889
78 Li YY, Zhu HL, Shen F, Wan JY, Han XG, Dai JQ, Dai HQ, Hu LB. Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose [J]. Adv Funct Mater, 2014, 24 (46): 7366-7372
79 Ambrogi M, Sakaushi K, Antonietti M, Yuan JY. Poly(ionic liquid)s for enhanced activation of cotton to generate simple and cheap fibrous electrodes for energy applications [J]. Polymer, 2015, 68: 315-320
80 Lijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6348): 56-58
81 Ai L, Jiang J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid [J]. Chem Eng J, 2012, 192: 156-163
82 Barber AH, Andrews R, Schadler LS, Wagner DH. On the tensile strength distribution of multiwalled carbon nanotubes [J]. Appl Phys Lett, 2005, 87 (20): 203106
83 Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Richie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Mat Sci Eng A, 2002, 334 (1-2): 173-178
84 Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys Rev Lett, 2000, 84 (20): 4613
85 Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Waarbeek RFT, Jong JJD, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339 (6116): 182-186
86 Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes [J]. Carbon, 2011, 49 (8): 2581-2602
87 Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable [J]. Chem Commun, 2011, 47 (37): 10182-10188
88 Kim IT, Tannenbaum A, Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices [J]. Carbon, 2011, 49 (1): 54-61
89 Ci SQ, Wen ZH, Chen JH, He Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J]. Electrochem Commun, 2012, 14 (1): 71-74
90 Wen ZH, Ci SQ, Mao S, Cui SM, Lu GH, Yu KH, Luo SL, He Z, Chen JH. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells [J]. J Power Sources, 2013, 234: 100-106
91 Mehdinia A, Ziaei E, Jabbari A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells [J]. Electrochim Acta, 2014, 130: 512-518
92 Hou JX, Liu ZL, Yang SQ, Zhou Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells [J]. J Power Sources, 2014, 258: 204-209
93 Wang YQ, Li B, Cui D, Xiang XD, Li WS. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell [J]. Biosens Bioelectron, 2014, 51: 349-355
94 Cui HF, Du L, Guo PB, Zhu B, Luong JHT. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode [J]. J Power Sources, 2015, 283: 46-53
95 Tang XH, Li HR, Du ZW, Wang WD, Ng HY. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells [J]. RSC Adv, 2015, 5 (63): 50968-50974
96 Wei H, Wu XS, Zou L, Wen GY, Liu DY, Qiao Y. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells [J]. J Power Sources, 2016, 315: 192-198
97 Chen YW, Chen LL, Li PW, Xu Y, Fan MJ, Zhu SM, Shen SB. Enhanced performance of microbial fuel cells by using MnO2 /Halloysite nanotubes to modify carbon cloth anodes [J]. Energy, 2016, 109: 620-628
98 Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell [J]. Bioprocess Biosyst Eng, 2017, 40 (6): 919-928
99 Wu XH, Qiao Y, Shi ZZ, Tang W, Li CM. Hierarchically porous n-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells [J]. Acs Appl Mater Inter, 2018, 10 (14): 11671-11677
100 Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG. Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes [J]. Angew Chem Int Edit, 2006, 45 (16): 2533-2537
101 Gu D, Li W, Wang F, Bongard HJ, Bernd S, Schmidt W, Weidenthaler C, Xia YY, Zhao DY, Schüth F. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries [J]. Angew Chem Int Edit, 2015, 54 (24): 7060-7064
102 Duan M, Rong YG, Mei A, Hu Y, Sheng YS, Guan YJ, Han HW. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite [J]. Carbon, 2017, 120: 71-76
103 Erable B, Byrne N, Etcheverry L, Achouak W, Bergel A. Single medium microbial fuel cell: stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities [J]. Int J Hydrogen Energy, 2017, 42 (41): 26059-26067
104 Li Y, Wu Y, Ong BS. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics [J]. J Am Chem Soc, 2005, 127 (10): 3266-3267
105 Hermida-Merino C, Pérez-Rodríguez M, Pi?eiro MM, Gallego MJP. Tuning the electrical conductivity of exfoliated graphite nanosheets nanofluids by surface functionalization [J]. Soft Matter, 2017, 13 (18): 3395-3403
106 Prasher P, Singh M, Mudila H. Oligodynamic Effect of silver nanoparticles: a review [J]. BioNanoScience, 2018
107 Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1 [J]. Colloid Surface B, 2011, 85 (2): 174-181
108 Baudler A, Schmidt I, Langner M, Gewiner A, Schr?der U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems [J]. Energ Environ Sci, 2015, 8 (7): 2048-2055
109 Yamashita T, Yokoyama H. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes [J]. Biotechnol Biofuels, 2018, 11 (1)
110 Yang YC, Chen CC, Huang CS,Wang CT, Ong HC. Developments of metallic anodes with various compositions and surfaces for the microbial fuel cells [J]. Int J Hydrogen Energy, 2017, 42 (34): 22235-22242
111 Brown RK, Schmidt UC, Harnisch F, Schr?der U. Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells [J]. J Power Sources, 2017, 356: 473-483
112 Zheng SQ, Yang FF, Chen SL, Liu L, Xiong Q, Yu T, Zhao F, Schr?der U, Hou HQ. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells [J]. J Power Sources, 2015, 284: 252-257
113 Singh S, Verma N. Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production [J]. Int J Hydrogen Energy, 2015, 40 (2): 1145-1153
114 Yuan Y, Shin H, Kang C, Kim S. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells [J]. Bioelectrochemistry, 2016, 108: 8-12
115 Narayanasamy S, Jayaprakash J. Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation [J]. Chem Eng J, 2018, 343: 258-269
116 Chakraborty A, Deva D, Sharma A, Verma N. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water [J]. J Colloid Interf Sci, 2011, 359 (1): 228-39
117 蒋沁芮, 李泽华, 杨暖, 吴亭亭, 李大平. 三维电极微生物燃料电池处理生活污水同步产电性能 [J]. 应用与环境生物学报, 2018, 24 (4): 873-878 [Jang QR, Li ZH, Yang N, Wu TT, Li DP. Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation [J]. Chin J Appl Environ Biol, 2018, 24 (4): 873-878]

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):1075.[doi:10.3724/SP.J.1145.2012.01075]
[5]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):36.[doi:10.3724/SP.J.1145.2014.03030]
[6]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[7]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]

更新日期/Last Update: 2019-08-25