|本期目录/Table of Contents|

[1]舒浩然,刘剑桥,王晓玲,等.导电聚合物在生物医学方面的应用[J].应用与环境生物学报,2019,25(04):1014-1020.[doi:10.19675/j.cnki.1006-687x.2019.02009]
 SHU Haoran,LIU Jianqiao,WANG Xiaoling,et al.Applications of conductive polymers in the biomedical field[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1014-1020.[doi:10.19675/j.cnki.1006-687x.2019.02009]
点击复制

导电聚合物在生物医学方面的应用
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
1014-1020
栏目:
综述
出版日期:
2019-08-25

文章信息/Info

Title:
Applications of conductive polymers in the biomedical field
作者:
舒浩然;?刘剑桥;?王晓玲;?雍媛;?韩露;?李帮经;?郭坤
1西南民族大学药学院 成都 610041 2西南民族大学化学与环境保护工程学院 成都 610041 3中国科学院成都生物研究所 成都 610041
Author(s):
SHU Haoran1;? LIU Jianqiao1;? WANG Xiaoling1;? YONG Yuan2;? HAN Lu1;? LI Bangjing3 & GUO Kun1**
1 College of Pharmacy, Southwest Minzu University, Chengdu 610041, China 2 College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China 3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
导电聚合物;?生物传感器;?组织工程学;?蛋白冠
Keywords:
conducting polymer;? biosensor;? tissue engineering;? protein corona
分类号:
TQ317.9
DOI:
10.19675/j.cnki.1006-687x.2019.02009
摘要:
导电聚合物(Conducting polymers,CPs)的研究和发展受到生物学、临床医学和生物医学工程等领域的关注,由于其良好的导电性、稳定的电化学特性以及良好的生物相容性在生物医学领域具有广阔的应用前景,比如用作生物传感器、神经性假体、人造器官、药物的控释载体以及组织工程支架等. 对导电聚合物在生物医学领域的研究进展、应用价值和未来发展动态进行综述,分别总结导电聚合物在组织工程学、再生医学和生物传感器等领域的应用研究,介绍导电聚合物在蛋白冠方面的应用价值. 在组织工程学和再生医学领域,导电聚合物主要用于神经再生、治疗心血管疾病及伤口愈合等方面. 在生物传感器领域,导电聚合物主要用于修复受损的神经系统、促进DNA探针定向结合、神经元再生以及用于检测乳酸、葡萄糖等一系列应激代谢标志物. 作为电功能性材料,导电聚合物的研究和发展十分迅速,制备出构筑设计方法简便、应用价值高、生物相容性优异的导电聚合物是未来研究发展的方向之一. 随着社会和科技的进步,关于导电聚合物的构筑设计和应用研究将大大促进功能材料领域的快速发展,在一定程度上拓展导电聚合物材料在生物医学领域的应用前景. (图4 参38)
Abstract:
The controlled release of drugs is an important direction in modern pharmacology, and the carrier used for drug delivery is usually a polymeric functional material. The research and development of conducting polymers (CPs) have received considerable attention in the fields of biology, clinical medicine, and biomedical engineering due to their good conductivity, stable electrochemical properties, and biological compatibility. Therefore, CPs have been widely used in biomedical fields, as biosensors, neural prosthesis, controlled release drug carriers, and tissue scaffolds. In this paper, we review the progress of research on conductive polymers and its trends. We summarize the preparation and application of conductive polymers in fields such as tissue engineering, regenerative medicine, and biological sensors. Finally, we introduce their applications, such as protein corona. In the fields of tissue engineering and regenerative medicine, conductive polymers are mainly used for nerve regeneration, treating cardiovascular diseases, and wound healing. In the field of biosensors, conductive polymers are mainly used to repair damaged nervous systems, promote DNA probe orientation binding, neuronal regeneration, and in a series of stress metabolism markers to detect lactic acid and glucose. As electric functional materials, research and development of conductive polymers have been very rapid, and one future vital research direction is the preparation of high-value conductive polymers with various applications and excellent biocompatibility through simple methods. We believe that research on the construction and application of conductive polymers will greatly promote the progress of functional materials and expand the application prospects of conductive polymer materials in the biomedical field.

参考文献/References:

1 Rylie G, Mohammad RA. Conducting polymers for neural prosthetic and neural interface applications [J]. Adv Mater, 2015, 27: 7620-7637
2 Su D, Di F, Xing J, Che JF, Xiao YH. Application of conducting polymers in controlled drug delivery system [J]. Prog Chem, 2014, 26 (12): 1962-1976
3 Gagan K, Raju A, Peter C, Mark B, Pathiraja G. Electrically conductive polymers and composites for biomedical applications [J]. RSC Adv, 2015, 5: 37553-37567
4 Sui L, Ju LH, Wang LY, Chen M. Applications and perspectives of conducting polymers in biomedical engineering [J]. Chin J Biomed Eng, 2011, 30 (2): 293-298
5 Tue BB, Melena DB, Yue X, Allan S, Frederik TM, Gregory JB, Ofer L, Zobeida CM, Vibeke A, Judith S, Darwin LC, Hanno S. A cost-effective high-throughput plasma and serum proteomics workflow enables mapping of the molecular impact of total pancreatectomy with islet autotransplantation [J]. Proteome Res, 2018, 17: 1983-1992
6 Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A, Orlando M, Donnorso MD, Perozziello G, Benfenati F, Di Fabrizio E. Delivery of brain-derived neurotrophic factor by 3d biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration [J]. Mol Neurobiol, 2018, 55: 8788-8798
7 赵庆祥, 李想, 洪毅. 电场刺激技术促进脊髓损伤神经再生的研究进展[J]. 中国骨与关节外科, 2013, 6 (6): 554-561 [Zhao QX,Li X,Hong Y. Research progress of electric field stimulation technology for nerve regeneration of spinal cord injury [J]. Chin J Bone Joint Surgery, 2013, 6 (6): 554-561]
8 Christian B, Felix O, Sabine S, Thomas S, Maria A. Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge [J]. ACS Appl Mater Interfaces, 2017, 9: 189-197
9 Xue JQ, Dai JZ, Zhang J, Zhao CX, Zhang YJ. New chemical materials [J]. Adv Mater Ind, 2017, 45 (9): 56-58
10 Elsa M, Goncalves, Filipe J, Oliveira, Rui F, Silva, Miguel A, Neto M, Helena F, Margarida A, Mar?a VR, Mercedes V. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation [J]. Biomed Mater Res Part B, 2016, 104B: 1210-1219
11 武艳强, 郭留希, 杨晋中, 张洪涛. 新型碳纳米材料制备工艺方法研究[J]. 超硬材料工程, 2016, 28 (5): 2183-2188 [Wu YQ, Guo LX, Yang JZ, Zhang HT. Research on preparation technology of new carbon nanomaterials [J]. Superhard Mater Eng, 2016, 28 (5): 2183-2188]
12 Nezakati T, Tan A, Seifalian AM. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer [J]. Colloid Interface Sci, 2014, 435: 145-155
13 李燕, 刘惠亮. 碳纳米管在心肌组织工程应用的研究进展[J]. 中华老年心脑血管病杂志, 2016, 18 (9): 993-995 [Li Y,Liu HL. Advances in the application of carbon nanotubes in cardiac tissue engineering [J]. Chin J Card Cereb Diseases, 2016, 18 (9): 993-995]
14 Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart [J]. ACS Nano, 2014, 8: 9822-9832
15 Elias S, Hamid Y, Hossein NM, Reza G, Zuhair MH.Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations [J]. Mater Sci Mater Med, 2017, 28: 75
16 Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications [J]. Mater Sci Eng, 2017, 77: 202-211
17 周浩贤, 张俊明, 屈志宇, 张潘宇, 樊友军. 基于Nafion固定磷钼酸和石墨烯共修饰PEDOT膜电极的电化学过氧化氢传感器[J]. 电化学, 2016, 22 (1): 57-63 [Zhou HX, Zhang JM, Qu ZY, Zhang PY, Fan YJ. Electrochemical hydrogen peroxide sensor based on Nafion fixed PEDOT film electrode with phosphomolybdate and graphene [J]. J Electrochem, 2016, 22 (1): 57-63]
18 Jessamyn A, Fairfield. Nanostructured materials for neural electrical interfaces [J]. Adv Funct Mater, 2018, 28: 1701145
19 Abidian MR,Martin DC. Multifunctional nano biomaterials for neural interfaces [J]. Adv Funct Mater, 2009, 19: 573-585
20 Abidian MR,Martin DC. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J]. Biomaterials, 2008, 29: 1273-1283
21 Wang Y, Wang L, Huang W, Zhang T, Hu XY, Jason A. Perman, Ma SQ. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection [J]. Mater Chem A, 2017, 5: 8385-8393
22 Widge AS, Jeffries-El M, Cui X, Lagenaur CF, Matsuoka Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes [J]. Biosens Bioelectron, 2007, 22: 1723-1732
23 Krishnasri VK, Sirshendu D. Polyaniline doped ultrafiltration membranes: mechanism of membrane formation and pH response characteristics [J]. Polymer, 2018, 153: 201-213
24 Xu C, Cai H, He P, Fang Y. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA [J]. Analyst, 2001, 126: 62-65
25 Nihan A, Jenny M, Jadranka TS. Conducting polymer based electrochemical biosensors [J]. Phys Chem, 2016, 18: 8264-8277
26 Bhavana R, Pugal Mani S, Rajendran N. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications [J]. Carbohy Polym, 2018, 189: 126-137
27 Liu T, Liu NN, Zeng BS, Li XH, Lin YY, Hong D. The study of the ECL enzyme-sensor based on SiC nanomaterials [J]. Shandong Chem Ind, 2016, 45 (22): 60-65
28 Zhu D, Li QQ, Pang XM, Liu Y, Wang X, Jia M, Chen G. Application of the impedance spectrum in the electrochemical sensor research [J]. Chem Sensors, 2016, 36 (1): 43-47
29 Jaspard F, Nadi M. Dielectric properties of blood: an investigation of temperature dependence. Physiol Meas, 2002, 23: 547-554
30 Cui XQ, Li CM, Zang JF, Zhou Q, Gan Y, Bao HF, Guo J, Lee VS, Moochhala SM. Biocatalytic generation of PPy-enzyme-CNT nanocomposite: from network assembly to film growth [J]. Phys Chem C, 2007, 111: 2025-2031
31 Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT. Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon-nanotube [J]. Sens Actuators B, 2007, 124: 269-276
32 Vinay Na, Parveen K, Pooja J, C SP. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer [J]. Enzyme Microb Technol, 2018, 113: 44-51
33 Ilangovan G, Manivannan A, Li H, Yanagi H, Zweier JL, Kuppusamy P. A naphthalocyanine-based EPR probe for localized measurements of tissue oxygenation [J]. Free Radical Biol, Med, 2002, 32: 139-147
34 Zheng HS, Mao S, Ding S, Chen XJ, Li YF, Zong K, Cao XD, YE YK. Preparation of a gold nanoparticles-reduced graphene oxide modified glucose oxidase biosensor and its amperometric determination of glucose in beverages [J]. J Instrum Anal, 2017, 36 (9): 1115-1118
35 Li L, Shi Y, Pan L, Shi Y, Yu G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors [J]. J Mater Chem B, 2015, 3: 2920-2930
36 Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G. Highly sensitive glucose sensor based on Pt nanoparticle/ polyaniline hydrogel heterostructures [J]. ACS Nano, 2013, 7: 3540-3546
37 Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials [J]. Nat Nanotechnol, 2012, 7: 779-786
38 Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield [J]. Chem Commun, 2013, 49: 2557-2559

相似文献/References:

[1]刘玉倩,魏婷,张超,等. 超敏感酵母HUG1-yEGFP生物传感器遗传毒性化合物检测方法优化[J].应用与环境生物学报,2014,20(05):919.[doi:10.3724/SP.J.1145.2014.01041]
 LIU Yuqian,WEI Ting,ZHANG Chao,et al. An optimized genotoxin detection method based on super-sensitive yeast HUG1-yEGFP biosensor[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):919.[doi:10.3724/SP.J.1145.2014.01041]
[2]舒浩然 刘剑桥 王晓玲 雍媛 韩露 李帮经 郭坤**.导电聚合物在生物医学方面的应用*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.02009]
 SHU Haoran,LIU Jianqiao,WANG Xiaoling,et al.Applications of conductive polymers in the biomedical field*[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1.[doi:10.19675/j.cnki.1006-687x.2019.02009]

更新日期/Last Update: 2019-08-25